
physics 492, Spring 2017Friday FeatureTM, M. Gold

The Lamb Shift
Δν=1058 MHz = 0.035 cm-1
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Williams Phys.Rev. 54.558 (1938)

Dirac Theory

Deviations from Dirac theory observed by Houston and 
Williams

ν=0.364  cm-1


λ=2.74 cm (micro-wave)
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from Williams Phys.Rev. 54.558 (1938)

n=3 to n=2 is Hα

Dα deuterium

line broadening is mostly 


doppler @100K

5mm = Δν 1 cm-1
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Pasternak (1938) suggested that these results 
could be 2S1/2 ,2P1/2 splitting of 0.03 cm-1 . 

However, most attributed discrepancies with Dirac 
to impurities in the source.

Hα corresponds to 2S level displacement 

of 0.030 cm -1 taking into account intensity ratio

Hα both I(3D3/2-2P1/2)/I(3P3/2-2S1/2)=2.4
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During World War II, Willis worked on radar at Columbia. That expertise, together 
with his deep knowledge of quantum theory, put him in a good position to carry 
out his famous level-shift (that is, the Lamb shift) measurements in the hydrogen 
atom shortly after the war.

radar technology

February 1940, Great Britain developed the resonant-cavity 
magnetron, capable of producing microwave power in the 
kilowatt range, opening the path to second-generation 
radar systems.[4].... Bell Labs was able to duplicate the 
performance, and the Radiation Laboratory at MIT was 
established to develop microwave radars.  (Wikipedia)

https://en.wikipedia.org/wiki/Cavity_magnetron
https://en.wikipedia.org/wiki/Cavity_magnetron
https://en.wikipedia.org/wiki/Radar_in_World_War_II#cite_note-4
https://en.wikipedia.org/wiki/Radiation_Laboratory
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𝚫l=1,-1 𝚫ml=1,0,-1 𝚫s=0

no j=0 to j=0

Electric dipole atomic transition rules:

𝚫j = 1,0,-1

α to a,b,c β to b,c,d α,β to e α,β to f 

Lamb Nobel 1955

disallowed 2S1/2↛1S1/2 τ = 1/7 s
allowed  τ ~ ns
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The excited atoms passed through a region containing both microwave radiation and an 
adjustable magnetic field, and then hit a metal target. The excited atoms would then 
drop back to the ground state, emitting electrons that the team could detect as a current. 
The key to the experiment was that if the magnetic-field-induced energy difference 
between the two states was equal to the energy of the microwave photons, then the 
long-lived S-state would absorb a photon and turn into to the short-lived P-state. These 
atoms would drop back to their ground state before reaching the target, and the current 
in the detector would essentially vanish. 

schematic
λ=2.4-18.5 cm
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Lamb Nobel 1955
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Lamb, 1947

observed 

current~10-14 A

quenching

Calibration
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Lamb, 1947

E(2S1/2)>E(2P1/2)  
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Lamb Nobel 1955
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Lamb Nobel 1955

hyperfine 

(21 cm, 1420.4 MHz)
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