phys522: HW #10

- 1. Calculate the $\ell = 1$ (P-wave) scattering phase shift δ_1 off of a hard sphere of radius a. Show that in the $ka \to 0$ limit $\delta_1 \approx -(ka)^3/3$ and therefore the P-wave can be neglected compared to the S-wave.
- 2. In the Born approximation, calculate the scattering amplitude for scattering off of the spherical δ -function potential

$$V(r) = \frac{\gamma \hbar^2}{2m} \delta\left(r - a\right)$$

Find the total Born cross section in the $ka \ll 1$ limit.

For $\ell = 0$, calculate the scattering off of this same potential by the method of partial waves in the low energy $ka \ll 1$ limit. Compare to the Born result. Determine a condition under which the Born approximation is valid. In this limit, compare to the partial wave result.

3. Consider l = 0 (S-wave) scattering off of a finite, attractive potential well, V(r) =

$$-V_0, \ r < a$$
$$0, \ r > a$$

Solve for the phase shift and total $\ell = 0$ cross section in three cases:

case 1: $ka \ll 1$ and $\delta_0 \ll 1$, show that σ_o is independent of k

- case 2: $ka \ll 1$ and $k_0 a \approx \pi/2$ where $\hbar k_0 = \sqrt{2m(E V_0)}$. Show that there is a corresponding bound state with near zero energy.
- case 3: $\delta_0 \approx \pi$, and show that $\sigma_o \approx 0$. Sketch U(r) = rR in this case, and compare to U(r) for $V_0 = 0$. This is called the Ramsauer-Townsend effect and is observed in low energy electron-atom scattering by Nobel gases.