Phys 522 Dirac Equation use natural units, tr=1, C=1. Relativistic energy momentum $E^2 = P^2 + M^2$ How yester rotation: $X^{\wedge n} = \{+, \overrightarrow{x}\}\$ $X_n = t$ upper index, contravariant with metric gr - que diag (1, -1, -1, -1) $x^m x^{\nu} g_{\mu\nu} = x^m x_{\nu} = t^2 - |\vec{x}|^2$ devivative \overline{a} , \overline{z} , \overline{y} = (\overline{x} , \overline{y}) lower index, covariant $2^* = \frac{3}{2x} = (3x - \vec{v})$ $\partial^4 \partial_{xx} = \frac{\partial^2}{\partial x^2} - \overline{v}^2 = \prod_{\alpha} \alpha \text{ direction}$ Klein-Gordon equation for scalar particle like pion. \vec{p} = = \vec{q} = = \vec{q} $-\frac{\partial^2}{\partial x^2} \phi = -\partial^2 \phi + m^2 \phi$ $\Box \emptyset + n^2 \emptyset = 0$

Dirac 2 probability flux 4-vector Conserved, covariant current $\partial_\mu \ddot{y}^\mu = 0$ S is temilike component of 4 vector. 4 $s' = Ys$ $d^3x' = \frac{1}{2}d^3x$ Lorentz contracted valuey s^{2} $s^{2}d^{3}x^{2} = gd^{3}x$ Fru partie solutioni "P"= (E, P)
4 = Ne P.X = P"Xu energy eigenvaluer $E = \pm (p^2 + m^2)^{1/2}$ Eco with sho regative every Sohetroni Pauli, Weisskoff put in change $j^{\mu} = -ie (\phi^{\nu} \partial^{\mu} \phi - \phi \partial^{\mu} \phi^{\nu})$ o i then change cleass to ELO Solution => Ejo solution for + change particle

Viron 3 Dirac - equation first order in time, like Schrodinger. $\frac{1}{2} \frac{1}{2} \frac{1}{2} = \frac{1}{2} \frac{1}{2}$ $H = \vec{\alpha} \cdot \vec{p} + \beta m$ with $H^{2} = P^{2} + m^{2} = (x^{2} - p^{2} + \beta n)^{2}$ required $34,48 = 25$ ¹⁰ anti-commutates $\{d', g\} = 0, \quad |g^2|$ Since Hei Hermitian, 2t=2 p+=p α^{i} , β^{2} =1 = ± 1 eigenvalue $(A^{i}\beta + \beta q^{i})\beta = 0$ $\alpha' = -\beta d^i \beta$ Cyclic property of trace $H_r(x_i^2) = -T_r(e_{x_i^2}) = -F_r(a_i^2+1)e^{i\theta}$ $tr(a') = -tr(a') = 0$ tracelar eigenvaleur impliée diviens sin even σ^2 , Im $\sigma' = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \sigma^2 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \sigma^3 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

 $\&$ irac 4 Smallest dimension to sotisfy The Pauli-Dirac representation diagonalizes $B = \begin{pmatrix} 1 & 0 \\ 0 & -T \end{pmatrix}$ then 2 = (0 0)
Covariant matrices are 8"= (B, B2) $Y^{\circ} = (\frac{1}{U} - \frac{1}{V}) \frac{1}{V} = (\frac{1}{V} - \frac{1}{V})$ The Weyl representation separate West: $\vec{a} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \cdot \vec{b} = \begin{pmatrix} 0 & \vec{x} \\ \vec{x} & 0 \end{pmatrix}$ Dirac equation for 4-component $i\frac{2}{34}y = (-i\vec{a}\cdot\vec{v}_{\text{r}}\sin{\gamma})$ Covariant form, miltigly on left up 3 $i = 804 + i 804 - 8^2 + 9 = 0$ 98 m 2 4 - m 4 = 0 recall 3 x = ()

Diroi 5 Hermitian conjugate ($\vec{\sigma}^{\dagger}=\vec{\sigma}$) γ^0 = γ^0 = γ^+ = γ^+ $(i8000 + i8.74 - m4 = 0)$ $-i$ de $4^{+}8^{0}+i\overrightarrow{0}4^{+}\cdot\overrightarrow{0}$ -m 4^{+} =0 this equation is not locate invariant. $\frac{1}{2} \int_{0}^{2} \frac{1}{2} dx = \int_{0}^{2} \frac{1}{2} dx = \int_{0}^{2} \frac{1}{2} dx$ define V = 4+80 $-i \partial_{0} \overline{\psi} \overline{\gamma}^{0} - i \overline{(\overline{\gamma} \psi)} \cdot \overline{\gamma} - m \overline{\psi} = 0$ or manifesty covariant, $1.2.4f^{4}$ + $M\overline{4}$ = 0 4 in adjoint (row) spinor Conserved current: Add $\overline{\psi}(\overline{\iota}\hspace{.15cm}\overline{\varkappa\hspace{.15cm}\nu}\hspace{.15cm}-\mu) \hspace{.15cm}\psi=0$ $(i\partial_\mu \overline{\psi}\gamma^\mu_{\mu\mu\nu} \overline{\psi})\psi=0$ $i\partial_{\mu}\overline{\psi}\overline{\psi^{\mu}}$ + $i\overline{\psi}\overline{\gamma^{\mu}}_{\mu} = i\partial_{\mu}(\overline{\psi}\overline{\gamma^{\mu}}_{\mu}) = 0$ Conserved consort: ju == a ju ju +

Dirac 6 \bigcirc <u>Plane wave Solution</u> V = U(p) e P+X
not - V does not defend on x
convenient Feynnen slash notation $K \equiv Y^{\mu}A_{\mu}$ direct substitution of 4 with alirac eg. $(\gamma_{CE}) + \gamma_{V}(\vec{v} - m) v = 0 \quad \vec{p} = \vec{v}$ $pu = (E - P) Y^2P_1 = PQ - 3\cdot P$ U equator: (8"Pu - m) U(F) = 0 Where E² = P2M2
Where E² = P2M2
U equation: U = (Up) up, down 2-spirous dyrine spinor besis with respect to $x' = (0) x^2 = (0)$ $\frac{\sigma_{\frac{2}{3}}\chi^{5}=(\frac{1}{11})^{2}+ \chi^{5}}{2}$ eigenstats of sprair Eader S= 1,2

Divac 7 Coupled eigenvalue equation $\vec{\sigma}.\vec{p}V_{g}=(E-m)V_{g}$ $\overrightarrow{O \cdot p} V_A - (E \cdot m) V_B$ A Esio, we can take two solutions as $v_g^s = \frac{\overline{OP}}{\overline{Eup}} x^s$ $\frac{qiv_{wij}v^{s}-v\left(\frac{\partial^{2}v}{\partial x^{2}}\right)}{s-1}$ 520 $sei,1$ for Eis take Up 2 2 and get $\frac{5f(z)}{f(z)}\frac{y}{y}e^{z}=\frac{1}{N}\left(\frac{6f}{F/m}x^{s}\right)\in\omega$ $\frac{1}{2}$ = $\frac{1}{2}$ 2- juli depenaen mean there is
another operator that commute with It,
the helicity operator
?. $\hat{p} = \begin{pmatrix} \frac{\partial}{\partial r} & 0 \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial r} \end{pmatrix}$ $\hat{p} = \frac{\vec{p}}{|\vec{p}|}$ unit Spin along direction of motion (helicity)

Dirac 8 Mormalization taken to be $\sqrt[4]{\psi^4\psi d^3x} = U^+U = 2E$ $(U^{s})^{+}U^{s} = |V|^{2} \left[1 + \left(\frac{\sqrt{2} \overline{G}}{2m}\right)^{2}\right] = 2 \epsilon$ $[N/2] + \frac{e^2}{\epsilon m^2} = 2\epsilon$ $\frac{1M^{2}}{(E+m)^{2}}\left[\frac{[-m]^{2}+P^{2}]}{E^{2}+m^{2}+2En+P^{2}-2E(E+m)}\right]$ gives INT= Erm Ne VEIM

 $Dirac - 2$ anti-particles: interpretation of regative energy solutions $U^{5+2}(\vec{p}) = \sqrt{\kappa m} \left(\frac{-\vec{r} \cdot \vec{p}}{\sqrt{\kappa m}} \right)^2$ $\sqrt{x^2}$ e^+ => -> $e^ e^ \in$ \vec{r} , \vec{r} , \vec{r} define po = - E > 0 $U\left(-\vec{p},s\right)e^{-i\left(E+\vec{p}\cdot\vec{x}\right)}$ $V(\vec{p},s') e^{i(\beta_{0}+\vec{p}\cdot\vec{x})} = V(\vec{p},s')e^{i\vec{p}\cdot\vec{x}}$ $S = 3, 4 - 85^{\circ} = 2, 1$ spin flip $V(\vec{p},2)=\sqrt{p_{o}+m}\left(\begin{array}{c}\vec{q},\vec{p}\lambda\end{array}\right)$ UP) satisfies adrei $(i \gamma u)$ and $u(\vec{r})e^{-i \rho_x} = 0$ $(i \nmid \mathbb{A}^n P_n - m) \cup (\mathbb{A}^n) = 0$ then $\vec{p}.\rightarrow -\vec{p}.\rightarrow -E = p^0 \rightarrow 0$ $P = (R_1 \vec{r})$ $(V^{\mu}P_{\mu}+m)V(\phi)=0$

 \bigcirc

 D *itec*-10-

Charge conjugation operator Em interaction $x - e$ $\frac{\partial u}{\partial x} = (x - \vec{v})$ $P^{\mu} \rightarrow P^{\mu} + e A^{\mu}$; $\partial^{\mu} \rightarrow i \partial^{\mu} + e A^{\mu}$ Hen Diron (12 + e An) - m] $y = 0$ C_{c} $\left[\chi^{n+1}(-i\partial_{\mu} + \epsilon \mu_{\mu}) - m \right] \psi^{*} = 0$ 9 charge conjugation metrix conibe bound
such that
- (cro) yut = ru(cro) the $[x^{\mu}(i)_{\mu}-eA_{\mu})-m]c\delta^{0}\psi^{2}=0$ $\mathcal{U}_c = C\delta^o \Psi^* = C \Psi^T$ $C = 18220$ $C20 = 182 = 0.000000$ Spinor subution 1: $\psi^{(1)} = i \gamma^{2} [J'(F) e^{s/r}]\bigg|^{2} = \sqrt{2\pi n} i \gamma^{2} \left(\frac{\partial}{\partial r} \vec{r} + \omega\right)$ = $\frac{1}{\sqrt{2\pi}}\left(\frac{3}{2\pi k}\right) e^{i\beta x}$ = $V^{3}(-\tilde{\rho})$ $e^{i\tilde{\rho} \cdot x} = V^{1}(\tilde{\rho}^{3})e^{i\tilde{\rho} \cdot x}$ with $\tilde{\rho}_{0} = |E|$ Spiror positron Solution (

 $Dirac$ - $11-$ Large + Small components $\overrightarrow{O\cdot P}$ $U_{B} = \left(\overline{E}-m\right)$ U_{B} $\frac{6.8 \text{ V}_{A} = E + M) \text{ V}_{B}}{N.R. limit: E = m \sqrt{P_{M}^{2} + P_{M}^{2}} = m + \frac{1}{2} \frac{P_{M}^{2}}{M} }$ take $\vec{p} = \rho \hat{z}$ use $V_{A} = \lambda^{5}$
 $T_{7} \lambda^{5} = (-1)^{5+1} \lambda^{5}$ $F \rightharpoonup V_{A} = P(-1)^{S_{11}} \chi^{S} = (2m + \frac{1}{2}\frac{p^{2}}{m})V_{B}$ then in M.R. limit $U_R = \frac{P}{2m}(-1)^{S+1}t^3 = \frac{P}{2m}(-1)^{S+1}U_R$ $=\frac{1}{2}V$ U_A putting back speed of light $|v_{\rm A}| = \frac{1}{2}(\frac{v}{c})|v_{\rm A}|$ So for the E>0 (electro) solutions, the lower 2 components are small in the non-relativistic limit. Similarly, for the positron solutions, the upper two components are small in the nonrelativistic limit.

 α irac -12 \bigoplus Non-telativistic Limit to include Em interaction, prisprise AM $(6=-e)$ defini E'= EFEA $\vec{p}' = \vec{p} + e\vec{A} = -i\vec{v} + e\vec{A}$ To use \overrightarrow{v} need spatis part of wore function. $U=U_{A1}U_{B}$ Coupled e gustini are $\vec{\sigma}$. \vec{p}' γ_{R} = $(E'$ m) γ_{R} $\sigma \bar{p}'$ γ_{A} = $E'+m$) γ_{B} then $(\vec{\sigma} \cdot \vec{p}) \Psi_{\alpha} = (\vec{\sigma} \cdot \vec{p}) (\vec{e'} + \vec{m}) \Psi_{\beta}$ reasonable to assume leAd << m, then (E'tm) x (E+m) and $(\vec{0}, \vec{p})^2 \gamma_A = (\vec{E} + \vec{m}) \vec{0} \cdot \vec{p}' \gamma_B = (\vec{E} + \vec{m}) (\vec{E} - \vec{m}) \gamma_A$ $\left(\vec{\sigma} \cdot \vec{p}' \right)^2 = p'^2 + i \vec{\sigma} \cdot (\vec{p}' \cdot \vec{p}') = p'^2 + i e \vec{\sigma} \cdot (\vec{p} \cdot \vec{n} + \vec{p} \cdot \vec{p})$ $(\vec{p} \times \vec{A} + \vec{R} \times \vec{p})$ $Y_A = -\vec{v}$ $(\vec{v} \times \vec{R} + \vec{a} \times \vec{v})$ $z - i$ \overrightarrow{v} \overrightarrow{n} \overrightarrow{n} \overrightarrow{r} \overrightarrow{r} \overrightarrow{r} \overrightarrow{r} \overrightarrow{r} \overrightarrow{r} $= -5 \frac{17}{8} \sqrt{4} \times 12 \frac{1}{8} \approx -18 \frac{1}{8} \frac{1}{8}$

 $091 - 13-$ Then, \bigcirc $(p^{12} + e\vec{\sigma}\cdot\vec{R})$ / $Y_{12} = (E+m)(E^{\prime}-m)$ Y_{12} define EZENE+m and $(E+m)(E^{\prime}m) = (E_{np}e2m)(E_{np}+eA^{\circ})$ x $2m(E_{WR}+eA^{0})$ giving $\frac{1}{2m}$ $\frac{\partial^2}{\partial \theta^2} + \frac{e}{2m} \vec{\sigma} \cdot \vec{g}$ $\frac{\partial}{\partial \theta^2} - e^{\beta \theta} \frac{\partial \phi}{\partial \theta^2} = E_{N\rho} \frac{\partial \phi}{\partial \theta^2}$ $\left| \frac{1}{2m} \left(\vec{P} + \epsilon \vec{A} \right)^2 \gamma_{A} + \frac{2}{2m} \vec{v} \cdot \vec{B} \gamma_{A} - \epsilon \vec{A}^0 \gamma_{B} - \epsilon_{NP} \gamma_{A} \right|$ $\frac{1}{2}$ $\frac{2}{2}$ $\frac{1}{2}$ $\frac{3}{2}$ = $\frac{2}{x}$ $\frac{2}{3}$ $\frac{3}{5}$ putting in facture to, c and use Eme become $2M_8S^1S$ 5. $\sqrt{9} = 2$