
	Identical Particles
	following Sakurai
	Quantum i dentical partiles (e.g. electrons)
	are in principle indistinguishable. The
	Quantum state cannot contain more in formationi
-	than is possible to measure in principle.
Dirac	+ Product two particle state
	(a) 16? a, 6 complete set of quartern
	numbers specifying stout. Order is understood as particle lakel 1, 2.
	as particle lakel 1, 2.
	Any linear combination is a valid work
	Jenetral,
	14)= e, (a) 16) + C2(6) (a)
	Introduce operators, A, (a) 167 = a (a) (8)
	Az (a) (b) = 6 (a) (b)
	then A, Ar 147 = ab 14) quantum numbers a, &
	do not uniquity specify state. This is called exchange degeneroey.
	ex charge de glasvoey.
	Particle a
	Particle exchange operator,
	Pu (9) 13) = 16>19>
	0 0 17:2
	Plaz Pe, and (Piz) = I.

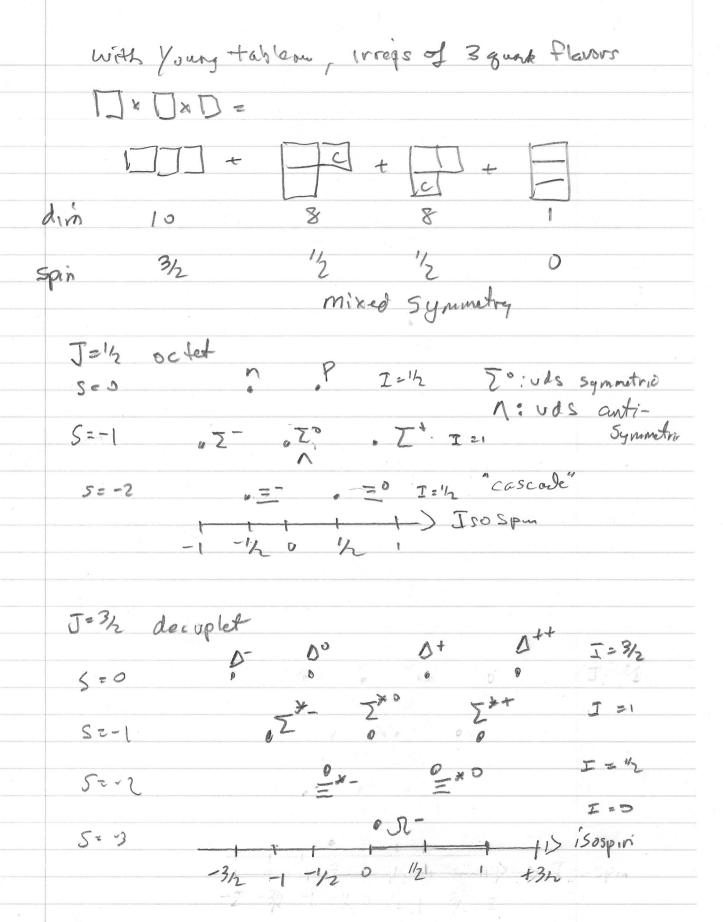
eigenstatus possible degrio 14= = 1/2 (1a) 1b) + (b) las) P12 (4.1) = + (4.1) Reguring 147 to be eigenstate of Piz Lift exchange degereracy, a Transformation of operators A. (a) (b) = a (a) (3) Piz A, (a) (b) = a (b) (a) (P12A, P12) P12/a) 16) = (P12A, P12) 16> b> b> we sa Piz A, Piz = A). Suppose (H, P, 2] 20 then 14) will have simultaneous Ligenvalue so energy eigenstates with he 14+> We can define symmetrization, antisymmetrization Operators Siz= = = = (1+ Piz) ; An = = = (1- Piz)

Then for example, arbitrary I near combination, 14)=c, (a) 15)+c2 (3) (2) Siz 147 = = (C, 107/15) + 2/6>(0) + C, 16>1a) + C2 (a>16>) = { (C1+C2) (12) 127 + (6) 127) Symmetrized Obvious extentention to n identical particles Spin-Statistics Theorem of QFT Integer Spin & Symmetric, Pose Statistics z-integer spin (anti-symentric Fermi statistis
Pauli-exclusion

	Wave Junction product of (spie) (spin) Synnetize with
	PIZ = PIZ PIZ
	Can be simply amonglished to more
	Con be simply generalized to more function states like isospin.
	Then two electron state 4 space, 2 spin properly antisymmetrized can be either
(⁵ 2 c)	property and symmetrized can we either
	Vs 2 or 42 xs
	Young Tableau (1901) method for deriving irroducible decomposition of Su(n).
pro	irroducible de composition of SU(n).
	Start with SU(2) spin, define smile
	Stort with SU(2) spin. define single partible states as
	1 Spin up 2 Spin down
	So I represents doublet
	Symmetric tableau estriplet
	Coupt or
	double count
	11/2
	[2/2]
	and
	completely antisymmetric singlet

anti symmetri
only i possibility singlet
general rule:
cannot decrease
ŽŽŽŠ
must increase
electron tableau
$-C = 7 \qquad \qquad \qquad $
$ \begin{array}{c c} 122 & j=3/2 \\ 222 & \text{symmetric} \end{array} $
not possible
r'd symmetry
2 2 2
two possibilities for electrone c" E"\$ \$
antisymmetric a, b a, b a, b a b

product of 3 Su(2) stat!
$\square \times \square \times \square = (\square + \square) \times \square$
= 111 + 12 + 127 + 127 + 127 + 127 notallowd
more sophisticated methods exist
for acting multiplicity of irreducible
more sophisticated methods exist for getting multiplicity of irreducible representation (irrep) in Su(n)
what exactly are two different mixed symmetry wreps?


.

7

For Su(2), we do not really need young To beau become decomposition to irreducible representationi (irreps) is easy; 2×2×2 or in highest je notation, センマンをこ (1+0)とち 1×2 かち ころ+ 2+3 = 4+2七 What are two states? use notation (4, 1/2) = u, /2, -1/7 = d 3/2 states completely symmetric 13/2, 3/2) = www 13/2, 2) = 15 (UUL+Ulu+ due 13/2 -12) = 13 (dhu+dud+Udd) (3/2, -3/2) = 228 In mixed symmetry first two antisymmetrizal antisymmetrizal [] tablem 1/2 /2) = = (vd-du) U 1/h, -1/2) = ge (vd-du) d

Other 1/2 mixed 5 ymarchy
We need Classch Gordon
[] = 11,0) = 1/2 (Ud+du)
[] = 1/2=1() = v ord
(1/2)~ 13111)12-2 - 1311の11212)
$= \int_{\frac{\pi}{3}}^{2} (vv) d + \int_{\frac{\pi}{3}}^{2} \frac{1}{\sqrt{2}} \left(vd + dv \right) v$
(1/2/2) = 「3/1,0)1/2-1)-13 (1,-1)1/2+2)
= 1/3 /2 (vd+du) d - 1/3 (dd) u
stoks are all property orthonormal
Very briefly, SU(3) "Eight fold way"
Gell-mann symmetry of 3 guark Blavour mass (mev)
UP U 2:5 (1505pin 511/2)
down d 5.0) Dels) Strange S 95.0 Slaver
Symmetry only approximate because of

Symmetry only approximate because of heavy strange guark. But good because banyon (strongly interacting fermions like proton) are much larger Mp 2 1000 mel

producted by Gell-Mann.
discovered at Brookhaven shortly after (1964)
Corners of decuplet have problem with Afermi statistics:
N= 575757 3 fermi one in same state
Introduce new quentum number color.
green g
then 12- = (STr)(STb)(STg)
Completely anti-symmetric in color - color singlet
Only color singlet states exist as particle
SU(3) - theory of QCD, generalization of QED with 3 charges
QED is U(1) symmetry one generator, gauge field And
(CD) SU(3) has 3-1 = 8 generators
and weak interaction, weak isospin SU(2) has 22-1 = 3 generators 3 gary fields W+, Z, W-
W+, Z. W-

.

7.