Lectune 13: Zeeman Effect
refer to Gripfith pizu4
It-atom in externel maynete $f=e \dot{i}\left(\vec{B}=B \hat{e}_{2}\right)$

$$
\begin{aligned}
\vec{H}^{\prime} & =-\vec{\mu} \cdot \vec{B} \\
\overrightarrow{\mu_{e}} & =-\left(\frac{e b}{2 m c}\right)\left(\frac{\vec{t}+g \vec{s}}{\hbar}\right)
\end{aligned}
$$

$g=2$ point-partide gyromagnite ratio

$$
\begin{aligned}
\mu_{B}=\frac{e^{\hbar}}{2 m C} & =5.79 \times 10^{-7} \mathrm{ev} / G \quad \text { Bohn } \\
& =5.79 \times 10^{-5} \mathrm{ev} / \mathrm{T} \text { magneton }
\end{aligned}
$$

$\mu_{B} \times$ charge/mass
with $\vec{B}=B \hat{e}_{z} \quad \hat{H}^{\prime}=\mu_{B} B\left(\frac{\hat{L}_{z}+2 \hat{S}_{z}}{\hbar}\right)$
compore $\left\langle\vec{H}^{\prime}\right\rangle$ to $\left\langle\hat{H}{ }^{\hat{\prime}}\right\rangle$

$$
\begin{aligned}
& \left\langle\hat{H}_{s v}\right\rangle_{l=2}=\frac{1}{6} m c^{2} \alpha^{*} \quad\left\{\begin{array}{cl}
1 & j=\frac{G}{2} \\
-2 & j=f_{2}
\end{array}\right. \\
& \left\langle\hat{t}^{\prime}\right\rangle=\left\langle\hat{H}_{5 v}\right\rangle \text { when } \\
& B \cong \frac{\frac{1}{6} m c^{2} \alpha^{4}}{\mu 1}=\frac{10^{-2}\left(5 \times 10^{5}+v\right)\left(\frac{1}{32}\right)^{4}}{6 \times 10^{-9} 8 v / 6} \\
& =5 \times e^{3} G=0.5 T
\end{aligned}
$$

Then we fowse 3 regumen:
$B \ll T$ weak

$$
B \gg \quad \text { stong }
$$

Ba T contor meduats
Weak $H_{0}^{1}=\frac{\hat{p}^{2}}{2 \mu}-\frac{e^{2}}{r}+\hat{H}_{50}$
unpenturbd stath

$$
\begin{array}{r}
\left|\phi^{o}\right\rangle=\left|n_{l l} \frac{1}{2}+j, m_{j}\right\rangle \\
\left\langle\hat{H}^{\prime}\right\rangle=\mu_{B} B\left[\frac{\left\langle\hat{J}_{2}\right\rangle}{\hbar}+\frac{\left\langle S_{2}\right\rangle}{\hbar}\right]
\end{array}
$$

whan we usel $\vec{l}+2 \vec{S}=\vec{J}+\vec{s}$
Sinei $\left|\phi^{\circ}\right\rangle$ ane not eigenstata of S_{2} we need Cleisch-Gordon confecceide

$$
\begin{aligned}
& \left|\frac{l \pm \frac{1}{2}}{l}, \ell, \frac{1}{2}, m_{j}\right\rangle= \\
& \left(\frac{l \pm m_{j}+\frac{1}{2}}{2 l+1}\right)^{l / 2}\left|\ell, m_{j}-\frac{1}{2}\right\rangle\left|\frac{1}{2}, \frac{1}{2}\right\rangle \\
& \pm\left(\frac{l \overline{+} m_{j}+\frac{1}{2}}{2 l+1}\right)^{1 / 2}\left|\ell_{1} m_{j}+\frac{1}{2}\right\rangle\left|\frac{1}{2},-\frac{1}{2}\right\rangle
\end{aligned}
$$

then

$$
\begin{aligned}
\left\langle S_{z}\right\rangle & =\frac{1}{2}\left[\frac{\ell \pm m+\frac{1}{2}}{2 l+1}-\frac{\ell \pm m+\frac{1}{1}}{2 l+1}\right] \\
& = \pm \frac{m j}{2 l+1} \quad \text { where } \pm \text { correspond to } \\
& =\ell \pm \frac{1}{2}
\end{aligned}
$$

adoloy thu i to $\left\langle J_{z}\right\rangle$ term,

Landé g-fueter con ale o be cesviten In 521 we derived this from WE projection theorem (we.pdf)

$$
\frac{g\left(g^{\prime} x\right)}{}=1+\frac{j\left(g^{\prime}+1\right)-l(L x)+\frac{b}{4}}{2 j\left(g^{\prime}+1\right)}
$$

for $l=0$ therein no \pm serai $j=\frac{1}{2}$ only $|l-5| \leq j \leq e+s$. In this are $g_{L}=2$

Example $n=2$

$$
\begin{aligned}
& S^{1 / 2}\left\langle\hat{H}^{\prime}\right\rangle=2 \mu_{B} B m_{j}= \pm \mu_{B} \\
& P^{1 / 2}\left(j=1-\frac{1}{2}\right) \\
&\left\langle H^{\prime}\right\rangle=\mu_{B} B m_{j}\left(1-\frac{1}{3}\right) \\
&= \pm \frac{1}{3} \mu_{B} B \\
& P^{3 / 2}\left(g=1+\frac{1}{2}\right) \\
&\left\langle H^{+}\right\rangle=\mu_{a B m_{j}}\left(1+\frac{1}{3}\right)=\frac{4}{3} \mu_{B} B m j
\end{aligned}
$$

Not-energy splettrgi a B.

Strone field
Consider $\hat{H}_{s o}$ ar prturbation to

$$
\begin{aligned}
& \hat{H}_{0}=\frac{\hat{p}^{2}}{2 \mu}-\frac{e^{2}}{r}+\mu_{0} B\left(\frac{\hat{E}_{2}+2 \hat{S}_{\xi}}{\hbar}\right) \\
& \left|\phi_{0}\right\rangle=\left|E, m_{l}\right\rangle\left|\frac{1}{2}, m_{S}\right\rangle \\
& E_{0}=-\frac{1}{2 \pi^{2}} m c^{2} \alpha^{2}+\mu_{B} B\left(m_{l}+2 m_{s}\right)
\end{aligned}
$$

We don't use $\hat{J}^{2}, \hat{I_{2}}$ basis becoure thene au not conserver due to the external torque.
Since there i nolinger ary degerenary, we con evaluat $\langle\vec{L} \cdot \vec{s}\rangle$ usurj non-degerente pertarbation theong. Wribe

$$
\begin{aligned}
& \hat{\hat{L}_{1} \dot{S}}=\frac{1}{2}\left(\hat{L}_{+} \hat{S}_{-}+\hat{L}_{\dot{S}} \hat{S}_{+}\right)+\hat{L}_{z} \hat{S}_{2} \\
& \langle\overrightarrow{h \cdot \vec{S}}\rangle=0+\left\langle L_{z} S_{z}\right\rangle=\hbar^{2} m_{1} m_{s}
\end{aligned}
$$

total fore struction correctori is then

$$
E_{y s}^{\prime}=\left(\frac{1}{2 n^{3}}\right) m c^{2} \alpha^{4}\left\{\frac{3}{4 n}-x\right\}
$$

where for $l=0, x=1$

$$
l \geq 0, \quad x=\frac{l(l+1)-m+m_{s}}{l\left(l+\frac{1}{2}\right)(l+1)}
$$

See next page

$$
E=-\frac{1}{2 n^{2}} m c^{2} \alpha^{2}+\mu_{B} B\left(m_{s}+2 m_{s}\right)+E_{j s}^{\prime}
$$

deperdonce on $B: \frac{1}{\mu_{B}} \frac{1 E}{d B}=m_{l}+2 m s=m_{l} \pm 1$

$$
n=2
$$

split vito 5
Lxvi:

Intermediate Case:
diagonalize $\left[-\vec{\mu}_{0} \cdot \vec{B}\right]+\left[\hat{H}_{p}\right] \omega_{n}$
unpertublel basis

$$
\left|n, e, m_{c}\right\rangle\left|\frac{1}{2}, m_{s}\right\rangle
$$

degeneracy $=2 n^{2}$
for $n=2$, 8×8 matrix. Label $a_{2} L\left(j, m_{j}\right)$,

$$
\begin{aligned}
& P\left(\frac{3}{2}, \frac{1}{2}\right) ; P\left(\frac{1}{2}, \frac{2}{2}\right) \text { and } \\
& P\left(\frac{3}{2},-\frac{1}{2}\right), P\left(\frac{1}{3}, \frac{1}{2}\right) \text { mix }
\end{aligned}
$$

no spin fem

Enengy in Strong 2eaman

$$
\begin{aligned}
& E_{k}^{(1)}=\frac{1}{k} \frac{m c^{2}(z \alpha)}{n^{3}}\left(\frac{3}{4 m}-\frac{1}{e+\frac{1}{2}}\right) \\
& E_{s 0}^{v}=\frac{1}{2} \frac{m c^{2}(z \alpha) y}{n^{3}}\left(\frac{m_{e} m_{s}}{\mu(l+1)\left(l+\frac{1}{2}\right)}\right) \\
& E_{D}^{1+}=\frac{1}{2} \frac{m c^{2}(2 \alpha) y}{n^{3}}(1) \\
& l=0: E_{k}^{4 n}+E_{p}^{u j}=\frac{1}{2} m c^{2}(2 \alpha)^{4}\left(\frac{3}{n 3}-2+1\right) \\
& l>0: E_{k}^{(1)}+E_{50}^{(1)}=\frac{1}{2} \frac{m c^{2}(z \alpha)^{4}}{n^{3}}\left(\frac{3}{8 n}-\frac{l(l+1)-m m_{1}}{l(l+1)\left(l+\frac{1}{4}\right)}\right) \\
& E=-\frac{1}{2} \frac{m c^{2}(2 \alpha)^{2}}{n^{2}}+\mu_{g} B\left(m_{2}+m_{5}\right)+E_{b 5}^{(1)} \\
& E_{f s}^{(1)}=\frac{1}{2} \frac{m c^{2}(z<)^{4}}{n^{3}}\left(\frac{3}{4 n}-x\right) \\
& l=0 \quad x=1 \\
& \ell>0 \quad x=\frac{l(e+1)-m_{s} n}{l(e+1)\left(l+\frac{1}{2}\right)}
\end{aligned}
$$

Zeeman recap degencrate patulation theoy'

$$
\begin{aligned}
& \hat{H}_{H_{y}}=\frac{\hat{p}^{2}}{2 \mu}-\frac{e^{2}}{r} \quad\left|n, l, m_{l}, s, m_{s}\right\rangle \quad 2 n^{2} \text { degenenats } \\
& \hat{H}_{f s}=\hat{H}_{k}+\hat{H}_{D}+\hat{H_{s a}} \quad\left|n, j, m_{j}, l, s\right\rangle \\
& \quad \text { maltiplets 2j+1 degpenent } \\
& \hat{H}_{z}=\mu_{B} B\left(\frac{\hat{Z}_{z}+2 \hat{S}_{z}}{\hbar}\right) \quad \text { zeeman }
\end{aligned}
$$

Weak $B \ll T \quad \hat{A}_{z}$ is pectublation

$$
\left\langle\hat{H}_{z}\right\rangle_{n_{j} m_{j} l s}=\mu_{B} B_{0} m_{j}\left(1 \pm \frac{1}{2 l+1}\right) \text { diagoonal }
$$ when for $l=0$, orly $+2 j 41$ degreiacy. removed

strong $B \gg T$ Hfs perturbutan

$$
\begin{aligned}
& \left\langle\hat{H}_{s}\right\rangle_{n \ell m_{e} s m_{s}=\frac{1}{2 n^{3}} m e^{2} \alpha^{4}\left\{\frac{3}{4 n}-x\right.} \quad \text { disqumel } \\
& x= \begin{cases}1 \quad l=0 & \\
\frac{l(l+1)-m_{e} m_{s}}{l(l+1)\left(l+\frac{1}{2}\right)} & l>0\end{cases}
\end{aligned}
$$

for $n=2$ degenente $8 \rightarrow 5$ lanc;
untumedide B~T diagonalize $\left\langle\hat{H_{z}}+H_{f s}\right\rangle_{\text {nemesoms }}$ busis

FIGURE 6.12: Zeeman splitting of the $n=2$ states of hydrogen, in the wee intermediate, and strong field regimes.
strong splitting: (5 lines)

e	m_{e}	m_{s}	$m_{e} \pm 2 m s$
0	0	$1 / 2$	1
1	1	$1 / 2$	2
	$-1 / 2$	-1	
	0	$1 / 2$	1
	$-1 / 2$	-1	
	-1	$1 / 2$	0
	$-1 / 2$	-2	

