Recitation \#7
 Quantum 522

1. In class we saw that for two $\ell=1$ electrons, there are a total of 2 x 2 spin and 3 x 3 orbital combinations making $4 \mathrm{x} 9=36$ possible angular momentum combinations. However, we also counted the degeneracy of the carbon outer 2-p electrons as the binomial coefficent $\binom{6}{2}=15$. Reconcile the two ways of counting.
2. For the first excited state of helium, configuration 1 s 2 s , what is the degeneracy and what are the corresponding terms? Which term is lower in energy? For helium in the ground state $1 s^{2}$ what is the degeneracy and what is the lowest energy term?
3. The radial wave function for the hydrogen atom states with highest angular momentum value $\ell=n-1$ are

$$
R_{n, n-1}=C r^{n-1} e^{-r / n a_{0}}
$$

where the constant is

$$
C=\left(\frac{2}{n a_{0}}\right)^{n+1 / 2} \frac{1}{\sqrt{(2 n)!}}
$$

Show that

$$
\langle n, n-1| r|n, n-1\rangle=a_{0} n\left(n+\frac{1}{2}\right)
$$

and

$$
\langle n, n-1| r^{2}|n, n-1\rangle=a_{0}^{2} n^{2}(n+1)\left(n+\frac{1}{2}\right)
$$

Verify the Bohr correspondence rule by calculating $\Delta r /\langle r\rangle$.

