Recitation \#9
 Quantum 522

1. Consider scattering of a potential $V(r)=-V_{0} \theta\left(r_{0}-r\right)$. In the born approximation, find the total cross section in the limit $k r_{0} \rightarrow 0$ and show that it is isotropic. With $q=2 k \sin (\theta / 2)$ the Born approximation is

$$
f^{(1)}(\theta)=\frac{-2 m}{q \hbar^{2}} \int_{0}^{\infty} r \sin (q r) V(r) d r
$$

2. Calculate the total cross section for scattering off of a Yukawa potential. In class we found (with $m_{0}=1 / r_{0}$)

$$
\frac{d \sigma}{d \Omega}=\left(\frac{2 m g}{\hbar^{2}}\right)^{2}\left(\frac{r_{0}^{2}}{q^{2} r_{0}^{2}+1}\right)^{2}
$$

Hint: $q^{2}=2 k^{2}(1-\cos \theta)$ and change variables from $\cos \theta$ to q^{2}.
Take the limit $r_{0} \rightarrow \infty$. What is the total Rutherford cross section?

