Physics 304

Lecture 18: Stress and Strain

Surface forces arise from intermolecular torces; so in continuum hypothesis are contact force. between reighboring points of material. By Newton III, canal exapt on surface.

Total stress on surface or traction (force/area)

First SA

wisfinitessimil

area in

continueum by pothesis serse)

The state of the service of t

how does to depend on h?

traction to is defined as force on Surface
on material on -h side by material on h side.

E(-n, x,+) = -E(n, x,+)

Newton's law for volume of material.

Javgöck,+) = Jggdv + (Surface foren)

Veed vector from S (surpose force)

	Cauchy's stress theorem: For infinitessimil
· · · · · · · · · · · · · · · · · · ·	Cauchy's stress theorem: For infinitessimil
	Arbitravily oriented triangular plane (P. P. P.)
	Arbitrarily oriented triangular plane (P., P., P.) Orthogonal axes ê, ê, êz, area 5A
	A S
	P3 A 5A
	P2 7 &2
27.5 (1) (1) (47.1 (1) (1) (47.1 (1)	The notation t(n) means the tension vector in the n-hat direction, tension at the same point varies with direction, so t(n)
	S(surgree Forces) = \(\tilde{T}(\hat{n})\delta A + \\\
	€ (-ê,) SA, + € (-€,) SA, + € (-€) SA,
	minur signi for outward pointing normals.
	$\delta A_1 = \hat{\epsilon}_1 \cdot \hat{N} \delta A = n, \delta A$
	$\int_{\mathcal{V}} \left(\operatorname{super} \int_{\mathcal{V}} \operatorname{tr}(\hat{\omega}) - \int_{\mathcal{V}} \operatorname{tr}(\hat{\xi}) \right) dA$
	as V-20, 8A-20 Slower than V, So to
· · · · · · · · · · · · · · · · · · ·	as V-20, 5A-30 slower than V, so to satisfy Newton II, on limit in equilibrium
	$\overline{Z}(\hat{n}) = \overline{Z} \cdot \eta_{j} \cdot \overline{L}(\hat{e}_{j}) \qquad \forall = \ell^{3} - 1 \cdot (\frac{1}{2})^{3} = \frac{1}{2} \vee A$ $A = \ell^{2} - \frac{1}{2} \cdot A$
	$A = \ell^2 \rightarrow \frac{1}{4}A$

2 · ·	In comprest form, $ \frac{3}{2} + (i) = 7 e v_{ij} v_{j} $ $ \frac{1}{2} + (i) = 7 e v_{ij} v_{j} $ $ \frac{1}{2} + (i) = 7 e v_{ij} v_{j} $
Parkeyane"	3 +(N)= Zeovin.
	t. (w) = > E.(e.) ne.
	1=1
	= Ti:
	or = F-R Since E, N are Vectors, Frei Jenson under rotation group SO(3)
	Fis Jenson under
	Now Cauchy didn't have vector calculus,
	Now Cauchy didn't have vector calculus, but Landon and Lifshitz Theory of Elasticity do.
	Recall Gauss's law in electrostatics-
	Es SgdV = JF. ÉNV = JE. da) enarge dereits, V ~ ov ov ov ov over or o
→ →	L'ange dereitig V W
E=-	
	here we start with vector -> tentor
	Genevalization of divergence theorem
·.	J= Jorce/Volume
	$\int \vec{J} dV = \oint \vec{J} \cdot d\vec{a} = \oint \vec{J} \cdot d\vec{a}$
	V A DV T. JOV
	Vector -> tensor
***	Or for = Z.D. Tij watch indicies!
	H (A) DT: No
	fora ti(n)= 2 Tij njo
	1 1

	Stress tensor à symmetric.
·	
	As we defined it To senface director
	5 force director
	Components on rectangula volume of square
	cross section (2° by d) centered at point P
	e_{2} \uparrow $f(-\hat{n})=-f(\hat{n})$
	7,2,02,
	Components on rectangula valume of square cross section (χ^2 by d) central at point P \hat{e}_{χ}
	21 4 572
**	V 522 > E
	0
	arrows indicate director of surface force
	for Off. 30
	torque about p in êz -
	/
	Ip = densita x volume x (2) x 29
	$Ip = density \times Volume \times (\frac{2}{2}) \times \lambda^2$
	So by Newton III in hout 2-20,
~	J2 = 0,2 Symmetric
So we	have $\overrightarrow{f} = \overrightarrow{\cdot}$ in vector notation

	Stress knoon for Phil
	In static fluid shear is zero. Also true for zero viscosity (" inviscid ") fluid because shear results from viscosity"
	for zero viscosite (" inviscid ") fluid
	because show results from viscosity.
Annual resident property and a second	
	Pressure in static Shuidie isotropic (similar to previous argument for symmetry, see text)
	previous argument for symmetry, see text)
	Oij = -PSij (static Gluid)
	$P = \omega_{\Lambda_0 + \lambda_1 + \lambda_2}$
	In general, non-static
_	$\overline{U_{ij}} = -P S_{ij} + d_{ij}$
	static motion, symmetrie
	dis depends on viscosity and can be expressed as derivatives of fluid velocity field:
	expressed as derivatives of fluid velocity field:
	$V(\vec{x},t)$
	$dy' = n\left(\frac{\partial x_i}{\partial x_i} + \frac{\partial x_i}{\partial x_i}\right) + \left(n' - \frac{3}{3}n\right)\left(\frac{3}{2}\frac{\partial x_k}{\partial x_k}\right)\frac{\partial y_i}{\partial x_i}$
	dij = n (DK: TX;) + (n-37/2 DXk)
	n = Viscosity, n' = second viscosity
	Incompressible fluid dan n'-3 n=0
	V

water very nearly incompressible

	Principle Stress Axes
	Fornit.
	Useful in case of plana boundary.
	Strain deformation under stress
	Displacement verter field $\overline{C}(\overline{r})$
	$\vec{V}(t) \rightarrow \vec{V}(t) + \vec{U}(\vec{F}, t)$
	Consider only small deformation of solide.
	Taylor "Femores" underent translations and notation. I follow more elegant & physical Landau & Lifshitz approach.
	Consider distance between two nearly points?
	(dl) 2 2 (dxi) 2 by Pg Hagorowe.
·	$\vec{r} \rightarrow \vec{r}' = \vec{r} + \vec{J}$ $dx_i \rightarrow dx_i' = dx_i + du_i$.

Examples of strain

O dilation (pure expansion)

every point 7-77 = (+e)7

Volume V = a. (bx2) - V' = a. (1x2')

= (4e)a. ((4e)b) x (4e)2) = a.(6x2) (1+3e)

 $\Delta V = V' - V = 3eV$ $\frac{\Delta V}{V} = 3e$

P: P' = ((+e)F) ((1+e)F) = r3+2eF. P

= [F] + 2 F. E. 7

 $\vec{E} = e\vec{1}$ $(\vec{1})_{ij} = \delta_{ij}$

ignor êz direction For which there is no deformation For which there is no deformation For " e is a side of the control of	(2) Shearing (più shear)
apoly symmetric show $r_p \to r_p$ $ \overline{r}_p' = (r_1 \cos x + r_2 \sin x) \overline{r}_1 + (r_1 \sin x + r_2 \cos x) \widehat{c}_2 $ $ \overline{r}_p' \overline{r}_p' = \overline{r}_1^2 + r_2^2 + 4 r_1 r_2 \cos x \sin x \times r_1^2 + r_2^2 + 4 r_1 r_2 $ $ = \overline{r}_1 \overline{r}_1 + 2 (r_1 r_2) (0 \overline{r}_1) (r_2) $ $ = \overline{r}_1 \overline{r}_1 + 2 \overline{r}_2 \overline{r}_2 \overline{r}_2 \overline{r}_3 $ $ \overline{r}_1 \overline{r}_2 + 2 \overline{r}_1 \overline{r}_2 \overline{r}_3 $ $ \overline{r}_1 \overline{r}_2 + 2 \overline{r}_1 \overline{r}_3 \overline{r}_3 $ $ \overline{r}_1 \overline{r}_2 + 2 \overline{r}_3 \overline{r}_3 \overline{r}_3 $ $ \overline{r}_1 \overline{r}_2 + 2 \overline{r}_3 \overline{r}_3 \overline{r}_3 $ $ \overline{r}_1 \overline{r}_2 + 2 \overline{r}_3 \overline{r}_3 \overline{r}_3 $ $ \overline{r}_1 \overline{r}_2 + 2 \overline{r}_3 \overline{r}_3 \overline{r}_3 $ $ \overline{r}_1 \overline{r}_2 + 2 \overline{r}_3 \overline{r}_3 \overline{r}_3 $ $ \overline{r}_1 \overline{r}_2 + 2 \overline{r}_3 \overline{r}_3 \overline{r}_3 $ $ \overline{r}_2 \overline{r}_3 \overline{r}_3 \overline{r}_3 $ $ \overline{r}_1 \overline{r}_3 \overline{r}_3 \overline{r}_3 $	
apoly symmetric show $r_p \to r_p$ $ \overline{r}_p' = (r_1 \cos x + r_2 \sin x) \overline{r}_1 + (r_1 \sin x + r_2 \cos x) \widehat{c}_2 $ $ \overline{r}_p' \overline{r}_p' = \overline{r}_1^2 + r_2^2 + 4 r_1 r_2 \cos x \sin x \times r_1^2 + r_2^2 + 4 r_1 r_2 $ $ = \overline{r}_1 \overline{r}_1 + 2 (r_1 r_2) (0 \overline{r}_1) (r_2) $ $ = \overline{r}_1 \overline{r}_1 + 2 \overline{r}_2 \overline{r}_2 \overline{r}_2 \overline{r}_3 $ $ \overline{r}_1 \overline{r}_2 + 2 \overline{r}_1 \overline{r}_2 \overline{r}_3 $ $ \overline{r}_1 \overline{r}_2 + 2 \overline{r}_1 \overline{r}_3 \overline{r}_3 $ $ \overline{r}_1 \overline{r}_2 + 2 \overline{r}_3 \overline{r}_3 \overline{r}_3 $ $ \overline{r}_1 \overline{r}_2 + 2 \overline{r}_3 \overline{r}_3 \overline{r}_3 $ $ \overline{r}_1 \overline{r}_2 + 2 \overline{r}_3 \overline{r}_3 \overline{r}_3 $ $ \overline{r}_1 \overline{r}_2 + 2 \overline{r}_3 \overline{r}_3 \overline{r}_3 $ $ \overline{r}_1 \overline{r}_2 + 2 \overline{r}_3 \overline{r}_3 \overline{r}_3 $ $ \overline{r}_1 \overline{r}_2 + 2 \overline{r}_3 \overline{r}_3 \overline{r}_3 $ $ \overline{r}_2 \overline{r}_3 \overline{r}_3 \overline{r}_3 $ $ \overline{r}_1 \overline{r}_3 \overline{r}_3 \overline{r}_3 $	for which there is no
apoly symmetric show $r_p \to r_p$ $ \overline{r}_p' = (r_1 \cos x + r_2 \sin x) \overline{r}_1 + (r_1 \sin x + r_2 \cos x) \widehat{c}_2 $ $ \overline{r}_p' \overline{r}_p' = \overline{r}_1^2 + r_2^2 + 4 r_1 r_2 \cos x \sin x \times r_1^2 + r_2^2 + 4 r_1 r_2 $ $ = \overline{r}_1 \overline{r}_1 + 2 (r_1 r_2) (0 \overline{r}_1) (r_2) $ $ = \overline{r}_1 \overline{r}_1 + 2 \overline{r}_2 \overline{r}_2 \overline{r}_2 \overline{r}_3 $ $ \overline{r}_1 \overline{r}_2 + 2 \overline{r}_1 \overline{r}_2 \overline{r}_3 $ $ \overline{r}_1 \overline{r}_2 + 2 \overline{r}_1 \overline{r}_3 \overline{r}_3 $ $ \overline{r}_1 \overline{r}_2 + 2 \overline{r}_3 \overline{r}_3 \overline{r}_3 $ $ \overline{r}_1 \overline{r}_2 + 2 \overline{r}_3 \overline{r}_3 \overline{r}_3 $ $ \overline{r}_1 \overline{r}_2 + 2 \overline{r}_3 \overline{r}_3 \overline{r}_3 $ $ \overline{r}_1 \overline{r}_2 + 2 \overline{r}_3 \overline{r}_3 \overline{r}_3 $ $ \overline{r}_1 \overline{r}_2 + 2 \overline{r}_3 \overline{r}_3 \overline{r}_3 $ $ \overline{r}_1 \overline{r}_2 + 2 \overline{r}_3 \overline{r}_3 \overline{r}_3 $ $ \overline{r}_2 \overline{r}_3 \overline{r}_3 \overline{r}_3 $ $ \overline{r}_1 \overline{r}_3 \overline{r}_3 \overline{r}_3 $	=> A Y/ deportuetor
** square she to $r_p = r_p =$	15h V 38 30
** square she to $r_p = r_p =$	$\rightarrow \mathbb{R}^{r_1}$
$ \vec{F}(\vec{r})' = \vec{r}^2 + \vec{r}^2 + 4\vec{r} \cdot \vec{r} \cdot \cos x \sin x \times \vec{r}^2 + r^2 + 4 d \vec{r} \cdot \vec{r} \cdot \sin x \cdot \vec{r} \cdot \vec$	apply symmetric shear Fp -> Fp
Small.) = $\vec{r} \cdot \vec{r} + 2 (\vec{r}_1 \cdot \vec{r}_2) (\vec{r}_1 \cdot \vec{r}_2)$ = $\vec{r} \cdot \vec{r} \cdot \vec{r} + 2\vec{r} \cdot \vec{r}_2 \cdot \vec{r}_2$ = $\vec{r} \cdot \vec{r} \cdot \vec{r} \cdot \vec{r}_2 $	Tp= (ricos x + 12 2 in x) = + (r, sin x + 12 cus x) ê2
Small.) = $\vec{r} \cdot \vec{r} + 2 (\vec{r}_1 \cdot \vec{r}_2) (\vec{r}_1 \cdot \vec{r}_2)$ = $\vec{r} \cdot \vec{r} \cdot \vec{r} + 2\vec{r} \cdot \vec{r}_2 \cdot \vec{r}_2$ = $\vec{r} \cdot \vec{r} \cdot \vec{r} \cdot \vec{r}_2 $	7/7/ 1 2
Small.) = $\vec{r} \cdot \vec{r} + 2 (\vec{r}_1 \cdot \vec{r}_2) (\vec{r}_1 \cdot \vec{r}_2)$ = $\vec{r} \cdot \vec{r} \cdot \vec{r} + 2\vec{r} \cdot \vec{r}_2 \cdot \vec{r}_2$ = $\vec{r} \cdot \vec{r} \cdot \vec{r} \cdot \vec{r}_2 $	Fife = ritrit 4912 Cos dant & ritrit 44812
$= \overrightarrow{F}_{0}\overrightarrow{F}_{1} + 2\overrightarrow{F}_{1} \cdot \overrightarrow{E}_{2} \cdot \overrightarrow{F}_{2}$ $= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \text{pur show}$ $\stackrel{?}{e_{1}} \stackrel{?}{e_{2}} \qquad \qquad \text{box of side } \Delta x$ $\stackrel{?}{e_{1}} \stackrel{?}{e_{2}} \qquad \qquad \text{for } (2x) = 2x$ $= 2x \qquad \qquad \text{engineting strain is } 2x$	Small V
$= \overrightarrow{F}_{0}\overrightarrow{F}_{1} + 2\overrightarrow{F}_{1} \cdot \overrightarrow{E}_{2} \cdot \overrightarrow{F}_{2}$ $= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \text{pur show}$ $\stackrel{?}{e_{1}} \stackrel{?}{e_{2}} \stackrel{?}{e_{3}} \stackrel{?}{e_{4}} \stackrel{?}{e_{5}} \stackrel$	- 58 - 3 (k r) /03 /(r)
E= (000) Pur shan ê'z êz box of side Δx Par for (27) = 27 engineering strain is 28	
E= (000) pun shan ê'z êz box of side Ax Ay = ton (2x) = 2x engineeting strain is 2x	= アッドィマド・を・ア・
engineering strain is 28	10801
engineeting strain is 28	F=(000) Pur chi
engineeting strain is 28	21 0
engineeting strain is 28	La Partie la
engineeting strain is 28	DOX of SIME &X
engineeting strain is 28	V= 18 @ = +on (22) = 28
·	, QX
·	engineeting strain is 28
Môte: Voheme unchryed - pure shen n' trace less	
traceless	Note: Vohene unchaged - Dure shear in
	traceless