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The Four Pillars of Big Bang Cosmology

The Four Pillars of Big Bang Cosmology
Expansion
Cosmic Microwave Background (CMB)
Nucleosynthesis (BBN)
Structure Formation

Questions
Dark Matter
Dark Energy
Baryogenisis
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Olber’'s paradox

If the universe is static, infinitely large and with an infinite number
of stars distributed uniformly, then the night sky should be bright.
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The Hubble constant
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FIGURE 1

Velocity-Distance Relation among Extra-Galactic Nebulae.
Expansion rate given by Hubble constant v = Hyr, with value
Hy ~ 70km/s/Mpc
1 parsec (pc) = 3.3 light-years. The milky way is 16 Kpc in
diameter.
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Big Bang Cosmology
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1) Expansion
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Top shows that for small

Z << 1, expansion is linear.
Bottom: Linear expansion divided
out, showing that the Hubble law
becomes non-linear for large Z.
Results strongly favor flat (k=0)
universe with Q.. ~ 0.7.
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Type 1A Supernovae

Supernovae examples from Hubble.
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NASA and A. Riess (STScl)

Type 1A identified by light “curve” (intensity vs time) and used as
standard candles.




2) Cosmic Microwave Background (CMB)

Cosmic MiICROWAVE BACKGROUND SPECTRUM FROM COBE

THEORY AND OBSERVATION AGREE
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photon decoupling: Universe becomes transparent to CMB photons
at T=10*K (1eV) at time 380,000 y. Red shift Z ~ 1000 where
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“Face of God”

Temperature fluctuations in the CMB after removing Doppler shift
and background from the galactic plane.

(57—0 ~ 60MK

6To/To=2x10"5
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Temperature fluctuations

w1, /2n (i)
o 8 8 8 8 8 8 §

Temperature fluctuations result from density fluctuations whose
size can be calculated (acoustic waves in plasma), and therefore
act as “standard rulers” on the surface of last scattering.
Correlation function,

ST(A) ST ()

C(8) =< 57 >,

averaged over A - n’ = cos(f)
Quac = 0.7
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3) Nucleosynthesis (BBN)

baryon density parameter Qph?
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4) Structure Formation
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Qmatter = 0.168 with Qparyonic/Qmatter = 0.17
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Global best Fit
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What the Universe is made of ?

m Dark Energy

B Dark Matter

W Free Hydrogen & Helium
ostars

BNeutrinos

B Heavy Elements

70% Dark Energy—what is it?
25% Dark Matter— what is it?
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Dark Matter and Structure problem

DISTRIBUTION OF DARK MATTER IN NGC 3198
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NGC 3188

Var (km/s)
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Radius  (kpe) Typical galactic
rotation curve.
ppark ~ 0.3GeV /em®

interaction rate of < 1 event/kg/day
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Strong Lensing
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Einstein Ring




Large Scale Structure

Need dark matter to form large filamentary structure, galaxy
clusters and galaxies. This is a computation of the large scale
structure based on GR with only dark matter.

1425 Mpc,'/lh
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WIMP Dark Matter: Direct Detection Experiments

Weakly Interacting Dark Matter:
There is no known particle
(“Standard Model”) with the
necessary properties: stable,
heavy M > 10GeV/, weakly
interacting. A new particle like
the supersymmetric photon, the
“photino” ?
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WIMP Dark Matter Principle

A4
ax \ | V4 In gas, these excite more xenon
g _ @ to make another light flash (S2)
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LXe

This also frees electrons, which
. e travel up an applied electric field
Wi J
Dark matter hits |
a xenon atom |

The atom recoils and excites
/ I \ others, causing a light flash (S1)

S1

‘ e

A Example signal

Figure: How dark matter would make S1 and S2 signals in the XENONTT detector.

20/38



WIMP Dark Matter Limits
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Figure 26.1: Upper limits on the SI DM-nucleon cross section as a function of DM mass.
XENON 1T 3.3 T LUX 370 kg
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WIMP Dark Matter Next Generation

- MR :
next generation: LZ 10 Ton , XENONNT 8.3 Ton shown is LZ
TPC in SURF, South Dakota




Neutron Electric Dipole Moment (EDM)

Why is the neutron electric dipole moment so small?

Naive estimate ——
gives 10"
d,=10"%e-cm gl ®

Neutron

down
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down e
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o o

EDM would violate CP. Why violation is so small is called the
“strong CP" problem. New U(1) symmetry, new extremely light
(~ 10peV) boson, the axion Dark Matter axions can convert to
two photons (resonant microwave cavity) in magnetic field.
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Axion Dark Matter

The ADMX G2 Experiment

ADMX is an axion haloscope, which uses a strong magnetic field to
convert dark matter axions to detectable to microwave photons.
The ADMX G2 experiment is one of the US Department of Energy's
flagship dark matter searches, and the only one looking for axions.
The experiment consists of a large magnet, a microwave cavity, and
ultra-sensitive low-noise quantum electronics.

~ Jx -~ —
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Axion Dark Matter Limits
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Graviational Waves

Basic Michelson
Interferometer with 4 km

Fabry Perot Cavities

"~ 4km

Q

Basic Michelson interferometer with Fabry 2038



Graviational Waves

Hanford, Washington (H1) Livingston, Louisiana (L1)
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FIG. 1. The gravitational-wave event GW150914 observed by the LIGO Hanford (H1, left column panels) and Livingston (L1, right
column panels) detectors. Times are shown relative to September 14, 2015 at 09:50:45 UTC. For visualization, all time series are filtered
with a 35-350 Hz bandpass filter to suppress large fluctuations outside the detectors’ most sensitive frequency band, and band-reject
filters to remove the strong instrumental spectral lines seen in the Fig. 3 spectra. Top row, left: H1 strain. Top row, right: L1 strain.
GW150914 arrived first at L1 and 6.9°3 ms later at HI; for a visual comparison, the H1 data are also shown, shified in time by this
amount and inverted (to account for the detectors’ relative Second row: G strain projected onto each
detector in the 35-350 Hz band. Solid lines show a numerical relativity waveform for a system with parameters consistent with those
recovered from GW 150914 [37,38] confirmed to 99.9% by an independent calculation based on [15]. Shaded areas show 90% credible
regions for two independent waveform reconstructions. One (dark gray) models the signal using binary black hole template waveforms 27/38
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Graviational Waves
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Graviational Waves
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Nature of the Dark Energy
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w = 1 means a Cosmological constant;

“quitessence”, a time varying vacuum energy? Or does General
Relativity need to be modified at large distances?

Various Dark Energy measurements planned.
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Inflation

» Horizon Problem: patches of sky separated by > 2° were
causally disconnected at time of (CMB) decoupling, yet
spectrum is perfect black body implying equilibrium.

» Homogeniety and Isotropy problem: Expect quantum
fluctuations in early universe to create inhomogeneities.

» Flatness problem: Why an almost perfectly flat geometry.
Proposed solution: Inflation (Guth)— An exponential expansion of
the universe at times 10~3*s due to a vacuum phase transition,

releasing enormous vacuum energy, due to some (unknown)
“inflaton” field. This theory predicted flat (2 = 1) universe!
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CMB polarization

BICEP2 B-mode signal

Declination (deg.]

0
Right ascension [deg ]

Figure: located in northern Chile @17,100 ft. Other experiments at the
south pole.

Inflationary theories predict that the early Universe underwent a
phase of exponential expansion during which a background of
gravitational waves was produced. Those gravitational waves will
then produce a primordial B-mode signal at the time of
recombination.
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Particle physics has an almost perfect matter-antimatter symmetry.
Most of the matter-antimatter in the early universe annihilated to
radiation leaving N,/N, ~ 6 x 107° Yet there are almost no
antiprotons in the universe! Particle physics has all the ingredients
to produce the matter-antimatter asymmetry, but not enough.
There must be new particle physics to explain this!
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Majorana Neutrino

lepto-genesis — theories that explain matter-antimatter asymmetry
of barons as resulting from lepton number violation from Majorana
neutrino

Lpcomn ¥ hes vo gaasseved
OM%, s pussila At
W vl own  antipartich \

The electron is really four separate fields. The neutrino might be
only two. It might be its own anti-particle.
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Neutrino-less Double Beta

A hypothetical nuclear decay that can only happen if the neutrino
is its own anti-particle. Measured ®Ge 33 with 2v is
T(1/2) = (1.84 +0.14 — 0.10)10%* yr.
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Egk}:‘c Neutrino 76Ge . . . > :
Xchange (Summed B Energy)/Q,,

Figure: Tiny red blip at endpoint greatly exaggerated. Looking for
T~ 10% yr
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LEGEND Experiment

excluded by GERDA, EX0-200,
KamLAND-Zen, CUORE-0
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Ge detectors emersed in liquid argon veto. Because we have only
measured neutrino squared-mass differences, we don't know the
mass ordering. “Normal” has state which is mostly
electron-neutrino as the lightest.
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Liquid Argon Veto

after LAY veto

Monte Carlo 2vpp (T, =1.9210%"yr)
in coincidence with LA veto
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FIG. 8. Background energy spectra of BFG(\ detectors uhtam(-d durmg GERDA Phase IT data taking. The spectra for events after
LAr veto rejection and events with sci ion light d al yed separately. The overlay of the 2v33 contribution
from Monte Carlo simulations in the spectrum after LAr veto lnghln;,hh the suppre:
Compton scattered 7’s at these energies.

fon of the background dominated by
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Cosmology and Particle Physics

o sysem

Quasars

Galaxy formation
Epoch of gravifonal collapse

Recombination

Relic adiation decouples (CBR)
Matter domination

Onsetof gravitational ins abilty

Nucleosynthesis
Light ted - D, He, Li

Quark-hadron transition
Hadrons form - ratons & neutrons

Electroweak phase transition
& weak nuclear

forces become diferentated:
SUESU(2Jx(1) > SU(E)A (1)

The Partie Desert
Axions, supersymmetry?

Grand unification transition
@ > H > SUASU(2IU(T)
Infiaton, baryogenesis,
monopales, cosmic stings, efc.?

The Planck epoch
The quantum gravily barrier
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