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Modern Physics 330: HW # 2

#1)The Lorentz Transformation

Show that the most general linear transformation taking coordinate sys-
tem S to coordinate system S’, where S’” moves along the common +x direc-
tion with speed v in frame S, that leaves the interval invariant is the Lorentz
transformation. The invariant interval is

(cAl)? = (2)” = (cAl)” — (/)"

#2) Time Dilation and Length Contraction

By judiciously picking specific space-time points in a certain reference
frame, show that moving clocks run slow, and that moving meter sticks are
contracted. (Hints: Proper time is the time measured in the rest frame of the
clock, Proper length is the length measured in the rest frame of the meter
stick. A length in any frame is the distance between two positions measured
at the same time.) Illustrate the measurement of the length of the stick in
the moving frame with a space-time diagram.

#3)Simultaneity

(44

Given two events X, = ( 8 ) and X, = ( - ) ;where 0 < € < 1, find

the boost to the frame in which these events are simultaneous.

#4)The Train Taggers Paradox

Two graffiti “taggers” are standing next to the train tracks separated by a
distance ¢ as measured in their frame (frame S). As a train traveling at near
light speed goes by, they simultaneously in their frame mark the train with
paint. What is the proper distance A between the marks, that is the
distance measured by observers aboard the train (frame S')?

Show that consistent answers are obtained in both frames.
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Place one of the taggers at the origin = 2’ = 0 and the other at x = /.
Define the following events:

0 ) in both frames.

1. o: common space-time origin X, = < 0

2. e X, = ( 2 ) in frame S.

/
3. f: Xf: ( 2 ) in frame S’.

Determine the coordinates for these events in both frames. Describe how
these events are observed in each frame. Draw a space-time diagram
showing events o,e,f in the train frame.



@* Things that move faster than lightf

The Lorentz tramsformation equations have no
meaning if the relative velocity of the two frames is
greater than the velocity of light. This is taken to imply-
that mass, energy, and information (messages) cannot
be moved from place to place faster than the speed of
light. Check this implication in the following examples.

(a) The scissors paradox. A very long straight rod,
which is inclinéd at an angle ¢ with the x axis, moves I
downward with uniform speed g (Fig. 44). Find the
speed Ba of the point of intersection A of the lower
edge of the stick with the x axis. Can this speed be ’
greater than the-speed of light? Can it be used to ;
transmit a message from the origin to someone far out i

~on the x axis? b

(b) Suppose that the same rod is initially at rest with ' !

- the point of intersection A at the origin. The region of

- the rod which is centered on the origin is struck by the
downward blow of a hammer. The point of intersec-
tion moves to the right. Can this motion of the point
of intersection be used to transmit a message faster
than the speed of light?

For ‘reprints of several articles on the clock paradox,
together with referénces to many more articles, see Special |
Relaiivity Theory, Selected Reprints, published for the
American Association of Physics Teachers by the American
Institute of Physics, 335 East 45th Street, New York 17,
New York, 1963. !

iSee Milton A. Rothman, “Things that go Faster than - - ) ‘ ) LT

- Light,” Scientific American 203, 142 (July, 1960)., :

72 Ex.29 Synchronization by a Traveling Clock

ed greater than the speed of light?

- Fig. 44. Can the point.of intersection A move with a spe

i,

(c) A very powerful searchlight is rotated rapidly in| -
such a way that its beam sweeps out a flat plane.
Observers A and B are on the plane and each the same
distance from the searchlight but not mear to each “
other. How far from the searchlight must A and B be
in order that the searchlight beam will sweep from A
to B faster than a light signal could travel from A to B?
Before they took their positions, the two observers
were given the following instructions: :

To A: “When you see the searchlight beam, fire 2

bullet at B.” o

To B: “When you see the searchlight beam, duck

because A has fired a bullet at you.” : i
Under these circumstances, has not a warning gone
from A to B with a speed faster than that of light?

(d) The manufacturers of some oscilloscopes claim

- writing speeds in excess of the speed of light. Is this
- possible?




84 Ex.38 The Galilean Transformation

/
!
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Therefore the Euclidean transformation equa-
tions (inverse of Egs. 29) become

% = x cos 8, — y sin f, = x — 6,y

(56) yl =xsin 0r+yCOS 97=07x+y

This approximate transformation can be made as
accurate as desired by making 8, sufficiently small.
. !
| 38.\The Galilean transformation

Suppose that 8. is very small. Then 8, = tanh 4.
=~ @,. Use the series expansions of Table 8 to show
that if terms that contain powers of 6, higher than the
first are neglected, the transformation equations be-

come

6D

X =x — Bt '
(P @)
(58) : f=—Bx+t

Now use everyday, nonrelativistic Newtonian argu-
ments to derive the transformation equations between
two reference frames. These are called the Gulilean

‘fransformation equations

(59) x' = Xx — Uslsee

(Galilean transformation) '

4 —
t'sec = tsec

(60)
where v, is the relative speed between the two frames in
meters per second. S

Transformation equations 57 and 58 appear to be
completely inconsistent with Eqgs. 59 and 60. Is this
first impression correct, and if not, why not? (Discus-
sion: Why does v, in the Galilean transformation
(Eq. 59) replace 8, in Eq. 57 ? How does Eq. 58 look
when rewritten in terms of v, and Zfe.? How do every-
day velocities compare with'the speed of light?)’

39.% Limits of accuracy
of a Galilean transformation

Make a more accurate approximation of the trans-
formation equations at low relative'velocities by allow-
ing terms in ¢, to remain but, again, neglecting terms
with higher powers of ¢,. (This is called a second order
approximation in 9,. Notice from the series expansion
of tanh 8 in Table 8 that even to second order in §,,
B, = 8,.) Show that the coefficients for x and f in Egs.
57 and 58 agree with the improved second-order ap-
proximation to better than 1 percent for velocities 8,
less than 1/7. ‘

If a sports car can accelerate uniformly from rest to
60 miles per hour (about 27 meters per second) in 7
seconds, roughly how many -days would it take to
reach g = 1/7 at the same constant acceleration? How
many days would be required to reach this speed at
the greatest acceleration that the human body can

stand for reasonable periods (about 7 g, or 7 times the
acceleration of gravity)?

-

@0.:} Collisions Newtonian and relati\‘listiéﬁ '
/4 —and the domain within which the

two predictions agree to one percent

Proton A collides elastically with proton B, whichis
initially at rest. The outcome of the collision cannot be
predicted. It depends upon the closeness of the en-
counter. In most events proton A will-be deviated by
only a slight angle as from its original direction of
motion. Then proton B will be given only a slight kick
off to the side, at an angle as (relative to the forward
direction) that is close to 90 degrees. Occasionally
there is a very close encounter in which B acquires
nearly all the energy and goes off at a very small angle
as to the forward direction. Between these two €x-

=

L AFTER

L BEFORE

Fig. 53. Laboratory frame record
of a symmetric elastic collision.
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Ex. 40 Collisions Newtonian and Relativistic 85

Fig. 54, A. Photograph of a nonrelativistic symmetric elastic collision

. petween a moving proton and a second proton initially at rest. Initial . . . : o R
speed of the incident proton is aboutg = 0.1. The angle between out- _ ~ p By
going protons is 90 degrees, as predicted by Newtonian mechanics. g ;,/

Frem C. F. Powell and G. P. S. Occhialini, Nuclear Physics in Photo- Sl P

graphs (Oxford University Press, Oxford, 1947).

tremes there occurs from time to time a “‘symmetric

* collision” in which the two identical particles come off

with identical speeds along paths that make identical
angles os = op = «f2 with the forward direction
(Fig. 53). Questign.: How great is the angle of deflection
in a symmetric’ collision? Discussion: According to
Newtonian mechanics the total angle of separation, is
90 degrees in every elastic collision (symmetric ornot!).
That this angle will be less than 90 degrees for a fast im-
pact is one of the most interesting and decisive predic-
tions of relativity. Figure 54,A, shows a low-velocity
collision whose 90 degree angle of separation satisfies
the Newtonian prediction. In contrast, Fig. 54,B,
shows a high-velocity collision whose angle of separa-
tion is decisively less than 90 degrees. This circum-

pant o s g e 1T

Fig. 54, B. Expansion chamber photo-
graph of a relativistic and approximately
symmetric elastic collision between a
moving electron and a second electron
initially at rest. Initial speed of the inci- -
dent electron is about 8 = 0.97. The
angle between outgoing electrons is much
less than the 90 degree angle predicted
by Newtonian mechanics. The curved
path of the charged electrons is due to
the presence of a magnetic field used to
determine the momentum of each elec-
tron. Document Hermann Publishers,
Paris. :

stance means that the difference between the separation
angle from 90 degrees provides a useful measure of the
departure from Newtonian mechanics. For example,
ask this question: How high must the velocity in such
collision experiments be before the separation angle
deviates from 90 degrees by as much as 1/100 of a
radian? It greatly simplifies the analysis of this ques-
tion to look at the symmetric collision pictured above
from a frame of reference so chosen that one can
capitalize on symmetry arguments. For this purpose
climb onto a rocket and travel to the right with a
velocity just great enough to keep up with the forward
velocities of A and B after the collision. Viewed from
this rocket, particles A and B therefore have no for-
ward velocity component:
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BEFORE

As to the lateral (up-down) velocity components of A
and B, note that these were equal in magnitude and
opposite in direction in the laboratory frame. More-
. over, this symmetry feature of the velocity diagram
cannot be altered by viewing the collision from a
rocket frame moving to the right. Therefore the veloci-
ties of A and B after the collision, as viewed in the
rocket frame, are equal and opposite. This conclusion
is payoff No. 1 from arguments based on symmetry.
Now for payoff No. 2—again achieved by viewing
the collision in the rocket frame of reference: In this
frame, and before the collision, A and B have veloci-
ties that are equal in magnitude and opposite in direc-
tion. Why? What inconsistency would result if these
speeds were not equal? Symmetry would be violated,
as one can See in the following way.

The diagram of the velocity in the rocket frame
after the collision has left-right symmetry. In other
words, by looking at the particles separating after the
collision it is impossible to tell from what directions
the particles arrived at the point of collision. |

BEFCRE

Fig. 56. Rocket record as it would be if, before the col-
lision, particles A and B have different speeds: an incorrect
assumption. )

Fig. 55. Rocket frame records of
the symmetric elastic collision of
Fig. 53. Rocket frame is so chosen
that particles A and B have no for-
ward velocity component after the
collision.”

Instead of A coming from the left and B coming from
the right, A could as well be coming from the right
and B from the left (for example, if the viewer went
around in back and looked at the collision from the
other side)..

350338

Fig. 57. Rocket record of Fig. 56 looked at ffbrn the other
side.

But the colliding particles are identical—what is .

called B in the diagram above could as well have been
called A, and conversely:

Fig. 58. Rocket record of Fig. 57 with labels A and B for
identical balls interchanged.




: records of
collision of
is so chosen
1ave no for-
:nt after the

ming from
1 the right
ewer went
1 from the

1 the other

—what is
have been

and B for
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Fig. 59. Conclusion of symmetry
arguments: In the rocket frame
in which balls A and B have no
forward velocity component after
“the collision, all speeds before the
collision and all speeds after the
collision have the same value.

BEFORE

Now note that we have in Figs. 56 and 58 two dif-
ferent initial conditions that result in one and the same
outcome (Fig. 53). Moreover, these initial conditions
differ only in that a suitable increase in the speed of
the observing rocket transforms Fig. 56 into the ap-
pearance of Fig. 58. But the outcome of Fig. 56 cannot
continue to look the same as the outcome of Fig. 58
after this increase in the speed of the observer. There
is therefore an inconsistency in assuming that Fig. 56
and Fig. 58 were different in the first place. To avoid
this inconsistency one must conclude that in the rocket
frame A and B have the same speed before the collision,
as drawn in Fig. 55.

Not only do A and B have equal speeds in the rocket
frame before the collision—and equal speeds after the
collision—but also these speeds before and after the

; collision are the same. If they were not, the following
. difficulty would arise. (Third use of a symmetry argu-

ment—here not symmetry in space but symmetry in
time!) Make a moving picture of the collision, develop
and print it, and run it backwards through the pro-
jector. If originally the particles Jost speed in the colli-

_ sion, they will now be seen to gain speed. Such a dif-

ference between the two directions of time is a

- characteristic feature of so-called irreversible processes,

such as (1) the flow of heat from a hotter object to a

‘ _ cooler one, (2) the aging of an animal, (3) the breaking

of an egg, and (4) an inelastic encounter. However, we
have limited attention bhere to elastic collisions. There-
fore we now accept for study only those events that
are reversible according to the following definition:
A reversible process is one in which it is impossible
to distinguish one direction of time from the other
by a difference between a film of the process run
through the projector in one direction and the same
film run through the projector in the other direction.
Because the collision of the two protons is elastic, all
four speeds in Fig. 59 are identical.
This result is very compact and simple. The reasoning

leading up to this result can be summarized in a form
equally compact and simple. Merely cite these two
words: “By symmetry!” Symmetry reasoning of this
kind simplifies the analysis of a great variety of phys-
jcal problems. v -
The reasoning so far, being based as it is on sym-
metry considerations, is the same in Newtonian and
in relativistic mechanics. The difference between the
accounts appears when the now completed rocket-
velocity diagram is transformed back to the labora-
~tory frame. In Newtonian mechanics velocities add as
vectors. Therefore we have only to add the horizontal
velocity 8, of the rocket frame after the collision to
find the velocities of A and B in the laboratory frame
after the collision:

Evidently the angle of separation « is indeed always
90 degrees in Newtonian mechanics, independent of
the velocity of the original impact. Not so in relativity!

Show that the incident proton can have a velocity as

-_great as 8 ="2/7 without making the angle between vs

and vg in a symmetric collision depart from the New-
tonian value of 90 degrees by as much as 0.01 radian—
that is, show that Newtonian mechanics gives good
accuracy for a particle with (2/7)c colliding with a
particle at rest (or particles with velocity (1/7)c collid-
ing with each other). The results of Ex. 20 may be
- useful. i

. Fig. 60. Newtonian (nonrela-
.. tivistic) analysis of resultant -
* velocities in the laboratory
frame after the collision.




