Modern Physics 330: HW # 5

- 1. The group velocity of a wave packet is given by $v_g = d\omega/dk$, where the function $\omega(k)$ is called the dispersion relation. Show that the group velocity for a relativistic free particle $\hbar\omega = E = \sqrt{p^2 + m^2}$ is equal to the particle velocity.
- 2. Consider a particle confined to a box -a/2 < x < a/2 with wave function a t=0 given by the "tent" wave function

$$\psi(x,0) = A\left(\frac{a}{2} - |x|\right)$$

for x inside the box and zero elsewhere.

- Find the normalization constant A.
- Find the uncertainty in x.
- Is this an energy eigenstate?
- 3. Consider an energy eigenstate where the the spatial part $\phi_E(x)$ is real. Find $\langle p_x \rangle$.
- 4. Consider the wave function for a particle in a box -a/2 < x < a/2 given at t = 0 by

$$\psi(x,0) = A\cos\left(\frac{\pi x}{a}\right)$$

- Find the normalization constant A.
- Find the uncertainty in x.
- Find the uncertainty in p_x and evaluate the uncertainty product $\Delta x \Delta p_x$.
- Show that this an energy eigenstate and find the energy eigenvalue.
- 5. Following the proof of

$$\frac{d\langle x\rangle}{dt} = \frac{\langle p_x\rangle}{m}$$

prove that

$$\frac{d\left\langle p_{x}\right\rangle }{dt}=\left\langle -\frac{\partial V}{\partial x}\right\rangle$$