Modern Physics 330: HW # 8

- 1. The fine structure splitting between the $2P_{3/2}$ and $2P_{1/2}$ multiplets is 4.52×10^{-5} eV. Calculate the fractional wavelength splitting $\Delta \lambda / \lambda$ in nanometers of the line from the $n = 2 \rightarrow n = 1$ transition.
- 2. What are the possible values for the total angular momentum quantum number j for an electron in a D ($\ell = 3$) state? What is the multiplicity for each of these j values, and show that the total number of states sums as it should.
- 3. Write the quantum numbers of the n = 3 states of hydrogen in terms of n, ℓ, m_{ℓ}, m_s and in terms n, ℓ, j, m_j . Write the energy degenerate muliplets $3L_j$ using spectroscopic notation (L=S,P,D..). Write the degeneracies of each multiplet, and show that they sum to the total you expect.
- 4. The Zeeman effect is the splitting of spectral lines when the atom is placed in an external magnetic field \vec{B}_{ext} . If the external field is large enough we can ignore the spin-orbit corrections and the shift in energy is (taking the magnetic field direction to be the z direction).

$$\Delta E = -\langle \mu_z \rangle B_{ext}$$

The expectation value $\langle \mu_z \rangle$ can be written in terms of the orbital angular momentum magnetic quantum number m_ℓ and the spin magnetic quantum number m_s .

(a) Show that

$$\langle \mu_z \rangle = \frac{e\hbar}{2m_e} \left[m_\ell + 2m_s \right]$$

Be sure to say where the factor of 2 comes from.

- (b) Into how many states does the 3D state of hydrogen divide in a strong external magnetic field?
- (c) Calculate the magnetic field strength needed to make an upward fractional energy shift $(\Delta E/E)$ of 10^{-4} on the $3D_{5/2}$ state of hydrogen.

5. Suppose an electron is in the spinor state

$$\chi = C \left(\begin{array}{c} 1\\ 1+i \end{array} \right)_z$$

- (a) Find the normalization constant C.
- (b) Find $\langle \mu_z \rangle$.

.

6. For the ground state wave function of hydrogen, calculate the radial velocity of the electron as

$$v_r = \frac{1}{m} \sqrt{\langle \hat{p}_r^2 \rangle}$$

The notation for the expectation value of any operator is defined as,

$$\langle \hat{O} \rangle = \int \psi^* \hat{O} \psi d^3 r$$

There is one difficult integral but it is $\langle 1/r \rangle = 1/a_0$ where a_0 is the Bohr radius. Hint– For the radial momentum operator, choose the most convenient form from lecture 10.