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Theoretical Critique: A P Lund and H M Wiseman,New Journal of Physics 12 (2010)

was followed by an experiment, summarized for the non-expert Certainty of Uncertainty.

Quoting from above reference,

“When first taking quantum mechanics courses, students learn about Heisenberg’s un-

certainty principle, which is often presented as a statement about the intrinsic uncertainty

that a quantum system must possess. Yet Heisenberg originally formulated his principle

in terms of the observer e↵ect: a relationship between the precision of a measurement and

the disturbance it creates, as when a photon measures an electron’s position. Although the

former version is rigorously proven, the latter is less general and as recently shown mathe-

matically incorrect. In a paper in Physical Review Letters, Lee Rozema and colleagues at

the University of Toronto, Canada, experimentally demonstrate that a measurement can

in fact violate Heisenberg’s original precision-disturbance relationship.”

The�experimental�paper:� PRL�109,�100404�(2012)

There is controversy, are-weak-values-quantum-dont-bet-it and paper Phys. Rev. Lett.

113, 120404 (2014) (by Christopher Ferrie and Joshua Combes, Center for Quantum Infor-
mation and Control, University of New Mexico, Albuquerque, New Mexico) claiming that

the Rozema result can be obtained classically and is therefore not quantum mechanics but

classical statistics (a Monty Hall type paradox). Further theoretical analysis supporting

Heisenberg: PRL 111, 160405 (2013)

“We have shown that despite recent claims to the contrary, Heisenberg-type inequalities

can be proven that describe a trade-o↵ between the precision of a position measurement

and the necessary resulting disturbance of momentum and vice-versa.”

Professor Werner said: “Since I was a student I have been wondering what could be

meant by an ’uncontrollable’ disturbance of momentum in Heisenberg’s Gedanken experi-

ment. In our theorem this is now clear: not only does the momentum change, there is also

no way to retrieve it from the post measurement state.”

Professor Lahti added: “It is impressive to witness how the intuitions of the great

masters from the very early stage of the development of the then brand new theory turn

out to be true.”
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While there is a rigorously proven relationship about uncertainties intrinsic to any quantum system,

often referred to as ‘‘Heisenberg’s uncertainty principle,’’ Heisenberg originally formulated his ideas in

terms of a relationship between the precision of a measurement and the disturbance it must create.

Although this latter relationship is not rigorously proven, it is commonly believed (and taught) as an

aspect of the broader uncertainty principle. Here, we experimentally observe a violation of Heisenberg’s

‘‘measurement-disturbance relationship’’, using weak measurements to characterize a quantum system

before and after it interacts with a measurement apparatus. Our experiment implements a 2010 proposal of

Lund and Wiseman to confirm a revised measurement-disturbance relationship derived by Ozawa in 2003.

Its results have broad implications for the foundations of quantum mechanics and for practical issues in

quantum measurement.

DOI: 10.1103/PhysRevLett.109.100404 PACS numbers: 03.65.Ta, 03.67.Ac, 42.50.Xa

The Heisenberg uncertainty principle is one of the cor-
nerstones of quantum mechanics. In his original paper on
the subject, Heisenberg wrote, ‘‘At the instant of time when
the position is determined, that is, at the instant when the
photon is scattered by the electron, the electron undergoes
a discontinuous change in momentum. This change is the
greater the smaller the wavelength of the light employed,
i.e., the more exact the determination of the position’’ [1].
Here, Heisenberg was following Einstein’s example and
attempting to base a new physical theory only on observ-
able quantities, that is, on the results of measurements. The
modern version of the uncertainty principle proved in our
textbooks today, however, deals not with the precision of a
measurement and the disturbance it introduces, but with
the intrinsic uncertainty any quantum state must possess,
regardless of what measurement (if any) is performed
[2–4]. These two readings of the uncertainty principle are
typically taught side-by-side, although only the modern
one is given rigorous proof. It has been shown that the
original formulation is not only less general than the
modern one—it is in fact mathematically incorrect [5].
Recently, Ozawa proved a revised, universally valid, rela-
tionship between precision and disturbance [6], which was
indirectly validated in [7]. Here, using tools developed for
linear-optical quantum computing to implement a proposal
due to Lund and Wiseman [8], we provide the first direct
experimental characterization of the precision and distur-
bance arising from a measurement, violating Heisenberg’s
original relationship.

In general, measuring one observable (such as position,
q) will, according to quantum mechanics, induce a random
disturbance in the complementary observable (in this case
momentum, p). Heisenberg proposed, and it is widely
believed, that the product of the measurement precision,
!ðqÞ, and the magnitude of the induced disturbance, "ðpÞ,

must satisfy !ðqÞ"ðpÞ # h, where h is Planck’s constant.
This idea was at the crux of the Bohr-Einstein debate [9],
and the role of momentum disturbance in destroying
interference has remained a subject of heated discussion
[10–12]. Recently, the study of uncertainty relations in
general has been a topic of growing interest, specifically
in the setting of quantum information and quantum cryp-
tography, where it is fundamental to the security of certain
protocols [13,14]. The relationship commonly referred to
as the Heisenberg uncertainty principle (HUP)—in fact
proved later by Weyl [4], Kennard [3], and Robertson
[2]—refers not to the precision and disturbance of a mea-
surement, but to the uncertainties intrinsic in the quantum
state. The latter can be quantified by the standard deviation

!Â ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hÂ2i% hÂi2

q
, which is independent of any specific

measurement. This relationship, generalized for arbitrary
observables Â and B̂, reads

!Â!B̂ & 1
2jh½Â; B̂(ij: (1)

This form has been experimentally verified in many set-
tings [15], and is uncontroversial. The corresponding gen-
eralization of Heisenberg’s original measurement-
disturbance relationship (MDR) would read

!ðÂÞ"ðB̂Þ & 1
2jh½Â; B̂(ij: (2)

This equation has been proven to be formally incorrect [5].
Recently, Ozawa proved that the correct form of the MDR
in fact reads [6]

!ðÂÞ"ðB̂Þ þ !ðÂÞ!B̂þ "ðB̂Þ!Â & 1
2jh½Â; B̂(ij: (3)

Because of the two additional terms on the left-hand side,
this inequality may be satisfied even when Heisenberg’s
MDR is violated.
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Experimentally observing a violation of Heisenberg’s
original MDR requires measuring the disturbance and
precision of a measurement apparatus (MA). While clas-
sically measuring the disturbance is straightforward—it

simply requires knowing the value of an observable, B̂,
before and after the MA—quantum mechanically it seems
impossible. Quantum mechanics dictates that any attempt

to measure B̂ before the MA must disturb B̂ (unless the

system is already in an eigenstate of B̂); as we shall discuss
later, it may also change the state in such a way that the
right-hand side (RHS) of Heisenberg’s inequality is modi-
fied as well. Because of these difficulties the disturbance,
as described here, has been claimed to be experimentally
inaccessible [16]. A recent experiment has indirectly tested
Ozawa’s new MDR [7], using a method also proposed
by Ozawa [17]. Rather than directly characterizing the
effects of an individual measurement, this work checked
the consistency of Ozawa’s theory by carrying out a set
of measurements from which the disturbance could be
inferred through tomographic means [18]; there has been
some discussion on the arXiv site as to the validity of this
approach [18–21]. In contrast, Lund and Wiseman showed
that if the system is weakly measured [22,23] before the
MA [Fig. 1(a)] the precision and disturbance can be
directly observed in the resulting weak values [8]. Here
we present an experimental realization of this proposal,
directly measuring the precision of an MA and its resulting
disturbance, and demonstrate a clear violation of
Heisenberg’s MDR.

To understand the definitions of the precision and dis-
turbance we first describe our implementation of a variable-
strength measurement. A variable-strength measurement
can be realized as an interaction between the system and
a probe followed by a strong measurement of the probe [24]
[shaded area of Fig. 1(a)]. The system and probe become
entangled through the interaction, disturbing the system,
such that measuring the probe will yield information about

the state of system. We define the disturbance as the root
mean squared (rms) difference between the value of B̂ on
the system before and after the MA, while the precision is
the RMS difference between the value of Â on the system
before the interaction and the value of Â read out on the
probe. Lund and Wiseman showed these rms differences
can be directly obtained from a weak measurement on the
system before the MA, post-selected on a projective mea-
surement on either the probe or system afterwards [8].
Specifically, they showed that the precision and distur-
bance for discrete variables is simply related to the weak-
valued probabilities of Â and B̂ changing, PWVð#ÂÞ and
PWVð#B̂Þ, via

!ðÂÞ2 ¼ "#Âð#ÂÞ2PWVð#ÂÞ; (4)

"ðB̂Þ2 ¼ "#B̂ð#B̂Þ2PWVð#B̂Þ: (5)

By taking our system to be the polarization of a single
photon we can demonstrate a violation of Heisenberg’s
precision limit by measuring one polarization component,
Ẑ, and observing the resulting disturbance imparted to
another, X̂. Here, X̂, Ŷ and Ẑ are the different polarization
components of the photon; we use the convention that their
eigenvalues are*1. For these observables, the bound [RHS
of Eqs. (2) and (3)] of both Heisenberg and Ozawa’s
precision limits is jhŶij. To facilitate the demonstration of
a violation of Heisenberg’s MDR, we make this bound as
large as possible by preparing the system in the state
ðjHiþ ijViÞ=

ffiffiffi
2

p
, so that jhŶij ¼ 1. In this state, the un-

certainties are !X̂ ¼ !Ẑ ¼ 1, which satisfy Heisenberg’s
uncertainty principle [Eq. (1)], as they must. On the other
hand, a measurement of !Ẑ can be made arbitrarily pre-
cise. Now, even if the Z precision, !ðẐÞ, approaches zero
the X disturbance, "ðX̂Þ, to X̂ can only be as large as

ffiffiffi
2

p
, so

that their product can fall below 1, violating Heisenberg’s
MDR. Note that attempting the same violation with the
Heisenberg uncertainty principle, by setting !Ẑ to zero,
requires that the system is prepared in either jHi or jVi, in
which case the bound, jhŶij, must also go to zero, so that
Eq. (1) is trivially satisfied.
We can measure Ẑ of a single photon, by coupling it to a

probe system with a quantum logic gate [25] [shaded
region of Fig. 1(b)], implemented in additional path de-
grees of freedom of the photon [26]. We use this technique
to implement both the weak measurement and the MA.
Current linear-optical quantum gates are reliant on post-
selection, which makes them prone to error [27]. We
circumvent this problem, making use of ideas from the
one-way model of quantum computing to implement the
quantum circuit of Fig. 1(b) [28]. To enable successive
CNOT gates between the system and the two probes we first
make a ‘‘2-qubit line cluster’’ in the polarization of two
photons.

FIG. 1 (color online). The weak measurement proposal of
Lund and Wiseman [8]. (a) A general method for measuring
the precision and disturbance of any system. The system is
weakly measured before the measurement apparatus and then
strongly measured afterwards. (b) A quantum circuit which can
be used to measure the precision and disturbance of X̂ and Ẑ for a
qubit system.
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Experimentally, we generate entangled 2-photon states
of the form $jHHiþ %jVVi, using a spontaneous para-
metric down-conversion source in the ‘‘sandwich-
configuration’’ [29]. Each crystal is 1 mm of BBO, cut
for type-I phase matching. We can set $ and % by setting
the pump polarization with quarter- and half-wave plates.
The pump beam is centered at 404 nm, with a power of
500 mW, generating down-converted photons at 808 nm.
The pump is generated by frequency doubling a femto-
second Ti:sapphire laser, which is centered at 808 nm,
using a 2 mm long crystal of BBO. The down-converted
photons are coupled into single-mode fiber before being
sent to the rest of the experiment. We observe approxi-
mately 15 000 entangled pairs a second, with 12% coupling
efficiency, directly in the fiber. When coupling the light
into multimode fiber after the interferometers, we measure
about 1000 coincidence counts a second, spread among all
the detector pairs. For each data point we acquire coinci-
dence counts for 30 sec using a homebuilt coincidence
counter based on an FPGA.We are able to make the desired
entangled state with a fidelity of 95.9%, which we measure
by performing quantum state tomography (QST) on the
photons directly after the single-mode fiber [30].

A modified quantum circuit which implements Lund and
Wiseman’s proposal [8] and includes the line cluster cre-
ation is drawn in Fig. 2(a), with the corresponding optical
implementation below in Fig. 2(b). A single logical polar-
ization qubit, $jHiþ %jVi, is encoded in two physical
polarization qubits, forming the line cluster $jH1H2iþ
%jV1V2i. Using a line cluster allows the first photon’s
polarization to control a CNOT gate with an additional
path degree of freedom, realized using a polarizing beam
splitter (PBS), to implement the weak measurement. After

this step the state is $jH1H2ijA1iþ %jV1V2ijB1i, where
jA1i and jB1i denote two different states of the path degrees
of freedom,jA1i ¼ &jP0iþ #&jP1i and jB1i ¼ #&jP0iþ
&jP1i. Now, measuring the first polarization in the X̂ basis
and finding X̂ ¼ þ1 teleports the state of the system to the

polarization of the second photon, hH1þV1ffiffi
2

p jð$jH1H2ijA1iþ
%jV1V2ijB1iÞ ¼ $jH2ijA1iþ %jV2ijB1i. (If instead, the
measurement result is X̂ ¼ %1 the teleported state will
be unitarily rotated to$jH2ijA1i% %jV2ijB1i; in principle,
one could correct this using feed-forward [31], but for
simplicity we discard these events.) We characterize the
teleportation by performing QST on the teleported single
photon polarization. To do this we insert quarter- and half-
wave plates, Q4 and H4, and remove the path qubit of
photon 2. We find the teleported state has a fidelity of
93.4% with the expected state, mainly due to the reduced
visibility of the interferometers. The polarization of the
second photon is now free to be measured by the MA,
which is implemented using a PBS and additional path
degrees of freedom of photon 2, in the same way that
photon 1 was weakly measured.
In order to clearly demonstrate a violation of

Heisenberg’s MDR we first experimentally characterize
the bound of Eqs. (2) and (3). Lund and Wiseman discuss
the limiting case of using perfectly weak measurements to
characterize the system before the action of the MA [8].
However, in order to extract any information from this
initial measurement, it cannot of course be infinitely
weak. Although for our system, both the precision and
the disturbance are independent of the weak measurement
strength, the bound of Eqs. (2) and (3) is not. For instance,
if we replaced the weak measurement of Ẑ with a strong
one, this would project the system onto eigenstates of Ẑ, all
of which have jhŶij ¼ 0; the inequality would automati-
cally be satisfied in this case. The weaker the measurement,
the less jhŶij is reduced, and the stronger the inequality. We
measured this experimentally, and Fig. 3 presents our data
for jhŶij of the state just after the weak measurement, as a
function of measurement strength, along with theory. It is
important to note that these experimental difficulties can
only lower the LHS of Eq. (2), and therefore cannot lead to
a false violation.
To show a violation of Heisenberg’s MDR we measure

the precision and the disturbance of the MA. To measure
the X disturbance we weakly measure X̂ on the system
before the MA post-selected on a strong measurement of
X̂ afterwards. Similarly, the Z precision of the MA is
obtained by weakly measuring Ẑ and then postselecting
on a strong measurement of Ẑ on the probe. From the
results of these weak measurements the X disturbance
and Z precision can be acquired. As an example, consider
the X disturbance, "ðX̂Þ, as defined in Eq. (5). We need
to measure the quantities PWVð#X̂Þ for all #X̂. Since we
are dealing with the polarization of a single photon, #X̂

FIG. 2 (color online). (a) The logical quantum circuit that we
implement. We use ideas from cluster state quantum computing,
namely, single-qubit teleportation, to implement successive
quantum gates. The first shaded area represents the creation of
the entangled resource. After a 2-qubit cluster is created, the first
qubit controls the controlled not gate used as our weak interac-
tion. After this it is measured and its state is teleported to qubit 2.
Qubit 2 then interacts with a second probe, which we use for our
von Neumann measurement. (b) The optical setup we use to
implement the quantum circuit in (a). We use two entangled
photons generated from spontaneous parametric down-
conversion as the first two qubits of the circuit. Path qubits are
added to each photon with 50=50 beam splitters, and their state is
initialized using variable attenuators.
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can only equal 0 or *2. PWVð#X̂ ¼ *2Þ is the weak
probability that the system initially had X̂ ¼ +1 and we
found it in in X̂ ¼ *1. These probabilities can be expressed
in terms of weak expectation values of X̂, postselected on
finding the system after the MA with X̂f ¼ *1, hX̂iX̂f

, as

[8]: PWVð#X̂¼*2Þ¼1
2ð1+hX̂iX̂f¼*1ÞPðX̂f¼*1Þ. In our

experiment, PðX̂f ¼ þ1Þ corresponds to the probability
of finding photon 2 diagonally polarized, given that the
teleportation on the first photon’s polarization succeeds,
which is signalled by photon 1 being diagonally polarized.
As shown in Fig. 2(b), both PBS’s are set to measure in the
diagonal basis, so this measurement amounts to counting
two-photon events between the transmitted ports of PBS1
(detectors D1 or D2) and PBS 2 (detectors D5 or D6). The
weak expectation value can be expressed in terms of the
weak probe observable Ẑp, since X̂ of the system couples to

Ẑ of the probe, as [25]:

hX̂iX̂f
¼ PðẐp ¼ þ1jX̂fÞ % PðẐp ¼ %1jX̂fÞ

2j&j2 % 1
: (6)

Here, 2j&j2 % 1 is the strength of the initial weak measure-
ment, which we know and set through the state of the probe.
The remaining quantities, PðẐp ¼ þ1jX̂f ¼ *1Þ and

PðẐp ¼ %1jX̂f ¼ *1Þ, are directly measurable. For ex-

ample, PðẐp ¼ þ1jX̂f ¼ *1Þ is the probability of finding
the first photon in path 1 given that the second photon was
found vertically polarized in either path. It is measured by
two-photon events between detector D1 (for the teleporta-
tion to succeed and for Ẑp ¼ þ1) and the transmitted port

of PBS 2 (detectors D5 or D6), to postselect on X̂f ¼ þ1.
A similar analysis can be done for the Z precision, but now
rather than postselecting on the polarization of photon 2,
X̂f, one has to postselect on the Ẑ value of the MA probe,
which is the path of the second photon.

The precision and disturbance were measured for sev-
eral measurement apparatus strengths and are plotted in
Fig. 4(a). The dashed lines are predictions for an ideal
implementation of the quantum circuit in Fig. 2(a), while
the solid lines, which fit our data well, take into account the

imperfect entangled state preparation. The imperfect state
preparation leads to errors in the single-qubit teleportation,
increasing the rms difference between the measurements
on the weak probe before the MA and the final verification
measurements, on the system and probe, after the MA.
Again, these errors can only increase disturbance and
precision, and thus the LHS of Eq. (2), and cannot lead
to a false violation.
From the measured precision and disturbance the LHS

of Heisenberg and Ozawa’s precision limits can be con-
structed. We set the strength of the initial weak measure-
ment such that the RHS of Eq. (2) is large enough that
Heisenberg’s MDR violated for all settings of the MA. We
measure jhŶij ¼ 0:80* 0:02, which gives the forbidden
region in Fig. 4(b). Heisenberg’s quantity, which can be
reconstructed simply from the measurements of the preci-
sion and the disturbance, is plotted in red. Ozawa’s quan-
tity, for which additional measurements of !X̂ and !Ẑ
were made on the state, using quarter- and half-wave plates
Q4 and H4, after the weak measurement, is plotted in
orange. The error bars are due to Poissonian counting
statistics. As seen in Fig. 4(b), Ozawa’s MDR remains

FIG. 3 (color online). A plot of the RHS of Eqs. (1) and (3)
versus the strength of the weak probing measurement. The
dashed line includes only the effect of the nonzero weak mea-
surement strength. In addition to this effect, the solid line takes
into account the imperfect teleportation.

FIG. 4 (color online). Experimental results. (a) The precision
of the measurement apparatus (MA) and disturbance it imparts to
the system plotted against its strength. (b) A plot of the left-hand
side of Heisenberg and Ozawa’s relations versus the strength of
the MA. For X̂ and Ẑ Heisenberg’s quantity is !ðẐÞ"ðX̂Þ, and
Ozawa’s quantity is !ðẐÞ"ðX̂Þ þ !ðẐÞ!X̂ þ "ðX̂Þ!Ẑ. The pre-
sumed bound on these quantities is given by the RHS of the
relations, measured to be jhŶij ¼ 0:80* 0:02. Heisenberg’s
MDR is clearly violated, with his quantity falling below the
bound, while Ozawa’s MDR remains valid for all experimentally
accessible parameters.

PRL 109, 100404 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

7 SEPTEMBER 2012

100404-4



valid for all the experimentally tested parameters, while we
find that the simple product of the precision and the dis-
turbance—Heisenberg’s MDR—always falls below the
experimentally measured bound.

In conclusion, using weak measurements to experimen-
tally characterize a system before and after it interacts with
a measurement apparatus, we have directly measured its
precision and the disturbance. This has allowed us to
measure a violation of Heisenberg’s hypothesized MDR.
Our work conclusively shows that, although correct for
uncertainties in states, the form of Heisenberg’s precision
limit is incorrect if naively applied to measurement. Our
work highlights an important fundamental difference be-
tween uncertainties in states and the limitations of mea-
surement in quantum mechanics.

We thank NSERC and CIFAR for financial support.
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While the slogan ‘‘no measurement without disturbance’’ has established itself under the name of the

Heisenberg effect in the consciousness of the scientifically interested public, a precise statement of this

fundamental feature of the quantum world has remained elusive, and serious attempts at rigorous

formulations of it as a consequence of quantum theory have led to seemingly conflicting preliminary

results. Here we show that despite recent claims to the contrary [L. Rozema et al, Phys. Rev. Lett. 109,
100404 (2012)], Heisenberg-type inequalities can be proven that describe a tradeoff between the precision

of a position measurement and the necessary resulting disturbance of momentum (and vice versa). More

generally, these inequalities are instances of an uncertainty relation for the imprecisions of any joint

measurement of position and momentum. Measures of error and disturbance are here defined as figures of

merit characteristic of measuring devices. As such they are state independent, each giving worst-case

estimates across all states, in contrast to previous work that is concerned with the relationship between

error and disturbance in an individual state.
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In spite of their important role since the very beginning
of quantum mechanics, uncertainty relations have recently
become the subject of active scientific debates. On one
hand, entropic versions of the information-disturbance
tradeoff [1] have become an important tool in security
proofs [2] for continuous variable cryptography. On the
other hand, there were widely publicized [3] claims of a
refutation [4–6] of the error-disturbance uncertainty rela-
tions heuristically claimed by Heisenberg [7]. A review of
the literature on uncertainty relations is given in [8].

Heisenberg’s 1927 paper [7] introducing the uncertainty
relations is one of the key contributions to early quantum
mechanics. It is part of virtually every quantum mechanics
course, almost always in the version forwarded by Kennard
[9], Weyl [10], and Robertson [11]. What is often over-
looked, however, is that this popular version is only one
way of making the idea of uncertainty precise. The original
paper begins with a famous discussion of the resolution of
microscopes, in which the accuracy (resolution) of an
approximate position measurement is related to the distur-
bance of the particle’s momentum.

This situation is in no way covered by the standard
relations, since in an experiment concerning the
Kennard-Weyl-Robertson inequality no particle meets
with both a position and a momentum measurement.
Heisenberg’s semiclassical discussion has no immediate
translation into the modern quantum formalism, particu-
larly since the momentum disturbance prima facie involves
the comparison of two (generally) noncommuting quanti-
ties, the momentum before and after the measurement.
Such a translation does require some careful conceptual
work, and one can arrive at different results. This is shown

by the example of Ozawa [4], who defines a relation he
claims to be a rigorous version of Heisenberg’s ideas, and
shows that it fails to hold in general. A suggested modifi-
cation of the false relation has recently been verified ex-
perimentally [5,6]. This has been widely publicized as a
refutation of Heisenberg’s ideas, in apparent contradiction
to our main result. However, there is no contradiction, and
the disagreement only shows that there is a grain of rigor-
ously explicable truth in Heisenberg, provided one looks in
the right place for it. While Ozawa aims to describe the
interplay between error and disturbance for an individual
state, our approach gives a state-independent characteriza-
tion of the overall performance of measuring devices. In
[12] we show that Ozawa’s notions, though mathematically
well defined, have only limited validity as measures of
error and disturbance [13].
We will describe and prove an inequality of the classic

form

ð!QÞð!PÞ $ @
2
; (1)

in which the quantities !Q and !P are not given by the
variances of the position and momentum distributions in
the same state, as in the textbook inequality. Instead,
following closely the suggestion of Heisenberg, they are
explicitly defined figures of merit for a microscopelike
measurement scenario: the accuracy !Q of a position
measurement and the momentum disturbance !P incurred
by it. Moreover, the inequality is sharp, and we will
describe explicitly the cases of equality. We believe that
the definitions and results are simple enough to use in a
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basic quantum mechanics course, although the full proof
uses some tools beyond such a course.

The main progress over earlier work [14] is a simpler
definition of the ! quantities, using the idea of calibration
[16]. This definition does not require the Monge transpor-
tation metric, which led in [14] to quantities akin to abso-
lute deviations rather than root mean square deviations,
and hence to a constant different from @=2 in (1). A
changed constant (even if optimal for the particular defi-
nitions of !) puts an undue burden on the memory of
undergraduates. Using variances also for calibration solves
this problem. The basic ideas of the proof in [14] can be
taken over.

To keep matters simple, we stick to the classic situation
of two canonically conjugate variables of a single quantum
degree of freedom. For the sake of comparison, let us recall
the scenario of the Kennard-Weyl-Robertson inequality,
which we call preparation uncertainty (see Fig. 1). The

spreads !!ðAÞ ¼ ½tr!A2 ! ðtr!AÞ2'1=2 of position Q and

momentum P are determined in separate experiments on
the same source, given by a density operator !. The un-
certainty relation !!ðQÞ!!ðPÞ $ @=2 is a quantitative

version of the observation that there are no dispersion-
free quantum states [17], as applied to a canonical pair of
observables. It is not to be found in Heisenberg’s paper [7],
except in a rough discussion of postmeasurement states,
which he assumes to be Gaussian with a spread related to
the accuracy of a position measurement.

In contrast, Fig. 2 shows the scenario discussed by
Heisenberg. The middle row shows an approximate posi-
tion measurement Q0 followed by a momentum measure-
ment. How should we define the momentum disturbance
and position error in this setup? The error of the approxi-
mate position measurement Q0 clearly refers to the com-
parison with an ideal measurement Q as shown in the first
row. For the momentum disturbance we can say the same:
We have remarked that the momenta before and after the
microscope interaction do not commute, so the difference
makes no sense in the individual case. However, we can
compare the distributions of the momenta measured after
the position measurement (we call this effective measure-
ment P0) with the distribution an ideal momentum

measurement P would have given on the same input state.
Come to think of it, this is precisely how we detect distur-
bance in other typical quantum settings. Consider, for
example, the double slit experiment. It is well known that
illuminating the slits enough to detect the passage of a
particle through one or the other hole makes the interfer-
ence fringes go away. Clearly, the light used for observa-
tion disturbs the particles, and the evidence for this is once
again the change of the distribution on the screen. Note that
this way of looking at error and disturbance restores the
symmetry between the position and momentum aspects of
this scenario. The uncertainty relations we will prove
therefore apply just as well to the position disturbance
caused by an approximate momentum measurement and,
more generally, to any measurement scheme M, which
produces in every run a value p and a value q (see the
dashed outline in Fig. 2). This generalization also covers
any successive measurement scenario, in which one tries to
correct for some of the momentum disturbance, perhaps
using the detailed knowledge of how the position measur-
ing device works. In principle, this could allow a reduction
of uncertainties. However, the inequality holds without
change, which gives a precise meaning and a proof to
Heisenberg’s phrase ‘‘uncontrollable momentum distur-
bance,’’ which he himself uses without further justification.
Let us now discuss the definition of !ðQ;Q0Þ in more

detail (the momentum case will be completely analogous).
We think of this ‘‘microscope resolution’’ as a figure of
merit for the device, a promise which might be advertised
by the manufacturer, and which could be verified by a
testing lab. !ðQ;Q0Þ ¼ 0 will mean that the ‘‘approxi-
mate’’ device Q0 is completely equivalent to the ideal Q;
i.e., for every input state ! the output distributions will be

ρ Q

ρ P

∆ρ(Q)

∆ρ(P)

FIG. 1. Scenario of preparation uncertainty. !! is the root of
the variance of the distribution obtained for the indicated ob-
servable in the state !. In this pair of experiments no particle is
subject to both a position and a momentum measurement.

ρ P'Q'

ρ P

ρ Q

M

 ∆(P, P' )

 ∆(Q, Q' )

FIG. 2. Scenario of measurement uncertainty for successive
measurements, as discussed by Heisenberg (middle row). An
approximate position measurement Q0 is followed by an ideal
momentum measurement, effectively given a measurement P0 on
the initial state. The accuracy !ðQ;Q0Þ quantifies the difference
between the output distributions of Q0 and an ideal position
measurement Q (first row). Similarly, the momentum distur-
bance !ðP;P0Þ quantifies the difference between the distribu-
tions obtained by P0 and by an ideal momentum measurement P
(last row). The definitions for these ! quantities (see text) can be
applied, more generally, to an arbitrary joint measurement M
(dashed box). This can be any device producing, in every shot, a
q value and a p value. Q0 and P0 are then defined as the
marginals of M, obtained by ignoring the other output.
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the same. Similarly, a small value might indicate that the
difference in the distributions will be small for every input
state. This requires a definition for the distance of two
general probability distributions, which we will give below
(see the section labeled ‘‘Uncertainty metrics’’). However,
we can also take a simpler approach, which avoids verify-
ing a statement for all input states. Instead, the testing lab
might concentrate on those states, which at least classically
would seem to be the most demanding ones, namely, states
for which Q has a known and sharp value. We call this
process ‘‘calibration.’’ Still, this requires testing of many
states but no longer on very mixed states, or states which
contain coherent superpositions of widely separated wave
functions.

An advantage of the calibrated error is that we no longer
need a quantitative evaluation of the distance between
arbitrary probability distributions, but just between an
arbitrary distribution and a known sharp value ". For this
we naturally take the root mean square deviation from ",

Dð!; Q0;"Þ ¼ hðq0 ! "Þ2i1=2!;Q0 ; (2)

where the angle brackets denote the expectation of the
indicated function of the output q0, in the distribution
obtained on the preparation ! with the device Q0.
This statement allows for Q0 to be a general positive
operator valued measurement. For projection valued
observables likeQwe could simplify this toDð!; Q;"Þ2 ¼
tr½!ðQ! "1Þ2'. The latter quantity is to be small, say( ",
for the input states ! used for calibration. Hence, we set
!cðQ;Q0Þ to be

lim
"!0

supfDð!; Q0;"Þj!;";Dð!; Q;"Þ ( "g: (3)

Here, the set is nonempty, since for any " and #> 0 there is
a ! such that trð!QÞ ¼ " and Dð!; Q;"Þ< #; moreover,
the limit exists, because with decreasing " the supremum is
over fewer and fewer states, so the function is nonincreas-
ing. In the case of a bad approximation, the supremum can
be infinite, in which case we put !cðQ;Q0Þ ¼ 1.

With this definition, and the corresponding one for P, we
can state our main result. We just assume that theQ0 and P0

are the marginal observables of some joint measurement
device M whose calibration errors are both finite. As dis-
cussed above, this also covers the case of a sequential
measurement (Fig. 2). Then

!cðQ;Q0Þ!cðP;P0Þ $ @
2
: (4)

This inequality is sharp, and equality holds for an M for
which the joint distribution of (q, p) outputs is the so-called
Husimi distribution [18] of the input state, which can be
obtained by a Gaussian smearing of theWigner function. In
the extreme case of one of themarginals being error free, the
error for the other marginal is necessarily infinite.

Proof.—The proof has two parts: The first is elementary
and concerns the special case that M is a covariant phase

space observable. These observables [18–21] can be
described explicitly, including a very simple form of their
marginals Q0 and P0, by which (4) can be reduced to the
preparation uncertainty. The second, more technical part of
the proof reduces the general case to the covariant case by
an averaging method, and is taken from [14]. We only
sketch it [22].
By a covariant measurement we mean one which has a

natural symmetry property for both position and momen-
tum translations. That is, if we apply it to an input state
shifted in position by $q and in momentum by $p, the
output distribution will be the same as before, transformed
by ðq; pÞ ! ðqþ $q; pþ $pÞ. These symmetries are
implemented by the Weyl operators (also known as
Glauber translations) Wðq; pÞ ¼ exp½ðiqP! ipQÞ=@'.
Then the whole observable can be reconstructed from its
density at the origin, which must be [20,21] a positive
operator % of trace 1, i.e., a density operator as for a
quantum state. The probability for outcomes in a set S *
R2 is then given by the positive operator

MðSÞ ¼
Z
S

dqdp

2&@ Wðq; pÞ+%Wðq; pÞ: (5)

A remarkable property of these joint measurements of
position and momentum is that their marginals take a
particularly simple form: The probability density of the
outputs q0 obtained on a state ! is a convolution of
the position distributions of ! and%. That is, we can model
the output distribution by taking q distributed like the
outputs of an ideal measurement Q on !, and adding a
noise term q00, which is independent of q and distributed
according to the position distribution of %. The same
description applies to the marginal P0.
Therefore, for a covariant measurement we can imme-

diately identify !cðQ;Q0Þ without further computation:
The density % is a fixed characteristic property of the
measurement. Therefore, as the position distribution of !
becomes sharply concentrated around some ", the outputs
converge in distribution to q0 ¼ "þ q00, so

!cðQ;Q0Þ ¼ Dð%; Q; 0Þ; (6)

which is the ‘‘size’’ (the root mean square deviation) of
the ‘‘noise.’’ For example, if % has sharp position distribu-
tion at some value a, this is equal to jaj, since the outputs
will be off by a shift a (i.e., q0 , qþ a). Hence, one will
choose % with zero mean. The uncertainty product then
becomes !cðQ;Q0Þ!cðP;P0Þ ¼ !%ðQÞ!%ðPÞ, which is
$ @=2 by the preparation uncertainty relation applied to
%. This proves Eq. (4) for the case of covariant measure-
ments, and at the same time provides examples of mini-
mum uncertainty measurements: all we have to do is to
choose % as a centered minimum uncertainty state, i.e., as
% ¼ j"ih"j with" a real valued centered Gaussian wave
function. The phase space distribution associated with an
input state ! by this measurement M is then the Husimi
distribution [18].
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The more technical part of the proof of Eq. (4) is to show
that for anymeasurementM there is a covariant one, say #M,
with at most the same!’s. Basically, #M is obtained fromM
by averaging, the technical problem being that the parame-
ter range of (q, p) over which one has to ‘‘average’’ is
infinite (see [14]). Let us introduce M"ð!Q;!PÞ as the
set of measurements M such that, for A ¼ Q, P,
Dð!; A0;"Þ ( !A whenever Dð!; A;"Þ ( " for given !A
and ". This is a convex set, and compact in a suitable weak
topology. We can write the covariance condition as a fixed
point equation for some transformations on the set of all
observables, namely, a unitary transformation by a Weyl
operator combined with a shift in the argument. These
transformations commute, and leave M"ð!Q;!PÞ invari-
ant. Therefore, by the Markov-Kakutani fixed point theo-
rem this set, if nonempty, must also contain a covariant
element, which by construction has at most the same uncer-
tainties. This concludes our sketch of the proof of Eq. (4).

Uncertainty metrics.—The calibration criterion only
involves highly concentrated states so that, in principle,
on general input states the optimal joint measurement
might produce output distributions quite different from
the ideal ones. One can easily give examples of a projec-
tion valued observable A and an ‘‘approximation’’ A0 for
which the calibrated distance is a rather optimistic esti-
mate. That is, if we denote by !ðQ;Q0Þ a figure of merit
based on comparison of all states, we might have
!ðQ;Q0Þ - !cðQ;Q0Þ. Note first that in the covariant
case this cannot happen: The statement that Q0 can be
simulated by adding fixed independent noise to Q is valid
for arbitrary input states, and any reasonable definition of
!ðQ;Q0Þ should give the size of the noise. However, in the
general case we would need a definition which is indepen-
dent of that special form. Here we will introduce such a
quantity and show that an uncertainty relation holds for it.

The idea is to define a metric D on probability distribu-
tions which extends (2) in the sense that Dð!; Q0;"Þ
becomes the metric distance between the output distribu-
tion of Q0 and a point measure at ". Then we set

!ðQ;Q0Þ ¼ sup
!
Dð!; Q;!; Q0Þ; (7)

where the expression on the right-hand side is the metric
distance of the two output distributions. Since !c takes the
supremum over the smaller set of highly concentrated
states, we have !ðQ;Q0Þ $ !cðQ;Q0Þ. The metric D on
probability distributions is basically fixed by our require-
ments as what is technically known as the Wasserstein-2
distance, which is a variant of the Monge-Kantorovich
transport or ‘‘earth mover’s’’ distance (see [24] for a study
of such metrics). The problem addressed byMongewas the
cost of transforming a hill (earth distribution ') into some
fortifications (earth distribution (), when the workers had
to be paid by the bucket and the distance covered. A
transport plan, also known as a coupling between the
measures ' and (, would be a measure ) on R. R

describing how much earth was to be moved from x to y.
This entails that the marginals of ) must be ' and (. The
cost in the Monge problem is

R
)ðdxdyÞjx! yj, which is

then minimized by choosing an optimal ). In the
Wasserstein-2 distance the cost function is chosen to be
quadratic in the distance and an overall root is taken to
bring the units back to a length

Dð';(Þ ¼ inf
)

!Z
)ðdxdyÞjx! yj2

"
1=2

; (8)

where the infimum is over all couplings ). Consider now
the case that ( arises from ' by adding independent noise
with distribution *, which amounts to the convolution ( ¼
' + *. This immediately suggests a transport plan, namely,
shifting each individual element of the ' distribution by
the amount suggested by the noise [formally, )ðdxdyÞ ¼
'ðdxÞ*½dðy! xÞ']. This may not be optimal, but gives the
estimate Dð';' + *Þ ( Dð*; 0Þ, the size of the noise,
where once again the second argument stands for the point
measure at zero. This says that the largest distance is
attained for a point measure ', and therefore

!ðQ;Q0Þ ¼ !cðQ;Q0Þ (9)

whenever Q0 is the marginal of a covariant measurement.
To summarize this section. if we define the deviation
between Q and Q0 by a worst-case figure of merit over
all states, the uncertainty relation once again holds.
Moreover, the two notions coincide on all covariant mea-
surements, and in particular for the cases of equality.
Conclusion and outlook.—With the inequality (4) we

have provided a general, quantitative quantum version of
Heisenberg’s original semiclassical uncertainty discussion.
This is a remarkable vindication of Heisenberg’s intuitions,
far beyond the usual view, which takes the quantitative
content of the paper to be summarized entirely by the prepa-
ration inequality, and sees the discussion of the microscope
as no more than a heuristic order of magnitude argument.
Our conceptual framework applies to any pair of observ-

ables which are not jointly measurable. However, evaluat-
ing the respective uncertainty bounds, which will typically
not be expressed in terms of the product of uncertainties, is
another matter requiring further studies.
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