HW #5 Intermediate Quantum 491

Townsend problems from Chapter 2: 2.13, 2.15, 2.16, 2.18, 2.20, 2.22

#7 For the direction $\hat{n} = \sin \theta (\cos \phi \hat{x} + \sin \phi \hat{y}) + \cos \theta \hat{z}$ construct the state corresponding to the $+\hbar/2$ eigenvalue, called $|+n\rangle$, by explicit rotation of the state $|+z\rangle$. Use the formula given in for the rotation operator about an arbitrary axis in the direction \hat{n} :

$$\hat{R}^s(\alpha \hat{n}) = \hat{I}\cos\frac{\alpha}{2} - i\vec{\sigma}\cdot\hat{n}\sin\frac{\alpha}{2}$$

 \hat{I} is the unit matrix and $\vec{\sigma} = \sigma_x \hat{x} + \sigma_y \hat{y} + \sigma_z \hat{z}$. Compare with the result given in the textbook. Are they the same?