HW #6 Intermediate Quantum 491

Townsend problems from Chapter 3: 3.2, 3.3, 3.4, 3.5, 3.9, 3.14, 3.15, 3.17, 3.19, 3.20

#11 Start with the 3x3 Euclidean rotation matrices (as say given in your mechanics textbook). Calculate the corresponding generators \hat{J}_x/\hbar , \hat{J}_y/\hbar , \hat{J}_z/\hbar . Diagonalize \hat{J}_z/\hbar and obtain the similarity transformation \hat{S} . Show that in this new basis (called the spherical basis) \hat{J}_z/\hbar is diagonal with values $\hbar, 0, -\hbar$ on the diagonal (this is typically written as $[\hat{J}_z] = diag[\hbar, 0, -\hbar]$). Use the similarity transformation to calculate the matrices \hat{J}_x/\hbar and \hat{J}_y/\hbar . Check that you get the same as given in the textbook. Finally, show that $\hat{S}^{\dagger}R^E(\theta\hat{y})\hat{S} = R(\theta\hat{y})$ as in problem 3.19.