Physics 491: Recitation #10 Nov. 11, 2016

The neutron interferemetry experiment (PhysRevLett.35.1053) is shown in Figure 1 from the paper. The unpolarized, spin-1/2 neutron interferes along the two paths, one path going through a magnetic field region. The neutron magnetic moment is $\vec{\mu} = g_N \mu_N \vec{S}/\hbar$ where the neutron g-factor is $g_N/2 = -1.91$ and the nuclear magneton is 3.15×10^{-14} MeV/T.

- 1. How does the electrically neutral neutron have a magnetic moment, and why is the nuclear magneton is so much smaller than the Bohr magneton $(5.8 \times 10^{-11} \text{ MeV/T})$.
- 2. For an unpolarized spin-1/2 particle we sum the probabilities (not the amplitudes) for spin up and spin down. Show that in either case, with the Hamiltonian $H = \omega_0 \hat{S}_z$, the counting rate at D should be proportional to $[1 + \cos(\omega_0 t/2)]$ predicting an oscillation period of $\omega_0 t = 4\pi$.

FIG. 1. A schematic diagram of the neutron interferometer. On the path AC the neutrons are in a magnetic field B (0 to 500 G) for a distance l (2 cm).

continued on second page

3. The neutrons were selected via Bragg diffraction to have a wavelength of $1.445 \mathring{A}$. The neutron mass is $Mc^2 = 940 \text{MeV}$. Calculate the fractional phase shift $\omega_0 t/4\pi$ for path C using $\ell = 1 \text{cm}$, $\lambda = 1 \mathring{A}$ and B = 100G. Plank's constant is 4.1×10^{-21} MeV·s. (I get the time $t = 2.55 \mu \text{s}$ and $\omega_0 t/4\pi = 0.3742$.) In the paper, they say the "effective length" of the field region is 2.7 cm. Use the results of Figure 3 (B in Gauss) to confirm that a rotation by 4π gives zero interference. (I get $\omega_0 t/4\pi = 0.9$ which they claim is = 1 within experimental errors.)

FIG. 3. The difference count, I_2-I_3 , as a function of the magnetic field in the magnet air gap in gauss. Approximate counting time was 40 min per point.