Physuis Yal
not assigned "funwith the δ-function"
(1) Prove $\left\langle k^{\prime} \mid k\right\rangle=\delta\left(k^{n}-k\right)$

$$
\begin{aligned}
& \left\langle k^{\prime} \mid k\right\rangle=\int\left\langle k^{\prime}\right| x\langle x \mid k\rangle d x \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i\left(h-k^{\prime}\right) x} d x=\delta\left(k^{\prime}-k\right)
\end{aligned}
$$

(2) prove $\delta(x)=\delta(-x)$

$$
\delta(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i k x} d k \quad l k \rightarrow-k!
$$

but $-\infty \leftrightarrow+\infty$ intercbarge guren anthen munir Sign ss

$$
\delta(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i h x} d h=\delta(-x)
$$

(3) Prove $\frac{d}{d x} \delta\left(x^{\prime}-x\right)=-\frac{d}{d x^{\prime}} \delta\left(x-x^{\prime}\right)$

$$
\begin{aligned}
\frac{d}{d x} \delta(x-x)=\frac{d}{d x}\left(\frac{1}{2 \pi}\right) \int e^{i k\left(x-x^{\prime}\right)} d k & =\frac{1}{2 \pi} \int i e^{i k(x-x)} d k \\
\frac{d}{d x^{\prime}} \delta(x-x)=\frac{d}{d x^{\prime}}\left(\frac{1}{2 \pi}\right) \int e^{i k\left(x-x^{\prime}\right)} d k & =\frac{1}{2 \pi} \int(-i k) e^{i k\left(x-x^{\prime}\right)} d k \\
& =-\frac{d}{d x} \delta\left(x^{\prime}-x\right)
\end{aligned}
$$

(4) Prave $\frac{d}{d x} \delta\left(x^{\prime}-x\right)=\delta\left(x^{\prime}-x\right) \frac{d}{d x}$

$$
\begin{aligned}
& f(x)=\int \delta\left(x^{\prime}-x\right) f\left(x^{\prime}\right) d x^{\prime} \\
& \frac{d f}{d x}=\int \frac{d}{d x} \delta\left(x^{\prime}-x\right) f\left(x^{\prime}\right) d x^{\prime} \\
&=-\int \frac{d}{d x^{\prime}} \delta\left(x^{\prime}-x\right) f\left(x^{\prime}\right) d x^{\prime} \\
& f_{\operatorname{Imm}}(3) \\
&=+\int \delta\left(x^{\prime}-x\right) \frac{d}{d x^{\prime}} f\left(x^{\prime}\right) d x^{\prime} \\
& \square
\end{aligned}
$$

rutegrait ly pants

