Physics 491: Recitation #7 October 2, 2015

Recall the photon circular polarization basis in terms of the linear polarization basis are

$$|\underline{R}\rangle = \frac{1}{\sqrt{2}} (|\underline{X}\rangle + i |\underline{Y}\rangle)$$

$$|\underline{L}\rangle = \frac{1}{\sqrt{2}} (|\underline{X}\rangle - i |\underline{Y}\rangle)$$

1. Write the transformation matrix \hat{S} to change from the linear photon basis to the circular polarization basis. Verify that \hat{S} is unitary.

Suppose $|\psi\rangle = \psi_x |\underline{X}\rangle + \psi_y |\underline{Y}\rangle$. What are the components of $|\psi\rangle$ in the circular polarization basis?

- 2. What is the photon angular momentum operator \hat{J}_z in the circular polarization basis? Transform this operator to the linear polarization basis. What are the eigenstates of \hat{J}_z written as column vectors in the linear basis?
- 3. Show that the photon angular momentum operator $\hat{J}_z = \hbar |\underline{R}\rangle \langle \underline{R}| \hbar |\underline{L}\rangle \langle \underline{L}|$. What is the operator $|\underline{R}\rangle \langle \underline{R}|$ represented in the linear basis? Operator $|\underline{L}\rangle \langle \underline{L}|$ in the linear basis?