Quarks have fractional charge and spin 1/2

proton(J=1/2) = (even spatial ground state) uf $u\downarrow df$ anti-symmetric spin

$$q_u = +2/3 e$$

 $q_d = -1/3 e$

Friday Feature™, M. Gold

Proliferation of baryons explained by by Gell-Mann: 3 quarks: u,d,s

Proton has spin 1/2 gluons (like photons) have spin 1 only way to get half-integer spin is to have half-integer spin constituents spin-3/2 Baryons

spin-1/2 Baryons

SU(3)_F flavor (u,d,s) symmetry

Friday Feature™, M. Gold

Bottom corner of the spin-3/2 decuplet had not yet observed. Gell-Mann predicted "Ω-" in 1962 — J=3/2, s=-3, q =-1 and m≈1680 MeV/c² (from strange quark mass scaling)

Discovered at Brookhaven in bubble chamber (1964).

Friday Feature™, M. Gold

Color: $\Omega^{-}(J=3/2) = (even spatial ground state) s_r \uparrow s_b \uparrow s_g \uparrow$

invent additional quantum number : color (rbg) to satisfy exclusion principle

SU(3)_c color (r,b,g) symmetry

Friday Feature™, M. Gold

QCD force based on this symmetry has properties asymptotic freedom and confinement

QED: photons have q=0

QCD: gluons have color charge

Friday Feature™, M. Gold

Friday Feature™, M. Gold

back in the day (1970's), SLAC, Menlo Park, California

Friday Feature™, M. Gold

jets in e+e- annihilation

jet axis

"jets" of hadrons = pions, etc.

Friday Feature™, M. Gold

Ratio of total cross sections: hadrons to muons

Friday Feature™, M. Gold

also, q anti-q bound states appear as resonances

Friday Feature™, M. Gold

angular distribution of jet axis

beams polarized \perp plane of storage ring

$$d\sigma/d\Omega \propto 1 + \alpha \cos^2 \theta + P^2 \alpha \sin^2 \theta \cos 2\phi$$
,

$\alpha = 1$ for spin 1/2, -1 for spin 0

P is degree of polarization, azimuthal angle ϕ measured from plane of storage ring, polar angle Θ with respect to beam axis

Friday Feature™, M. Gold

G. Hanson *et al.*, "Evidence for Jet Structure in Hadron Production by e^+e^- Annihilation." *Phys. Rev. Lett.*, **35**, 1609 (1975).

FIG. 3. Observed distributions of jet-axis azimuthal angles from the plane of the storage ring for jet axes with $|\cos\theta| \leq 0.6$ for (a) $E_{c.m.} = 6.2$ GeV and (b) $E_{c.m.} = 7.4$ GeV.

Friday FeatureTM, M. Gold

quark charge and mass

quark	Q	$\approx mass(MeV)$
u	2/3	2.5
d	-1/3	5
\mathbf{S}	-1/3	95
С	2/3	1250
b	-1/3	4200
t	2/3	$173,\!000$

quarks are "confined" inside hadrons (proton, neutron, pion,...)

Friday Feature™, M. Gold