HW \#1 Problems

Quantum 521

1. Consider the matrix that rotates a Euclidean vector in the $x-y$ plane,

$$
\hat{R}^{E}(\phi)=\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right)
$$

Find the (complex) eigenvalues and corresponding eigenvectors. Write the simlarity transformation matrix \hat{S} with eigenvectors as columns and show explicitly that $\hat{S}^{\dagger} \hat{R}^{E} S$ is diagonal. Show that S is unitary, that is $\hat{S}^{\dagger} S=\hat{I}$ where \hat{I} is the identity matrix. Find the transformed eigenvectors in the new basis where \hat{R}^{E} is diagonal.

Exercise 1.9.1.* We know that the series

$$
f(x)=\sum_{n=0}^{\infty} x^{n}
$$

may be equated to the function $f(x)=(1-x)^{-1}$ if $|x|<1$. By going to the eigenbasis, examine when the q number power series

$$
f(\Omega)=\sum_{n=0}^{\infty} \Omega^{n}
$$

of a Hermitian operator Ω may be identified with $(1-\Omega)^{-1}$.
Exercise 1.9.2.* If H is a Hermitian operator, show that $U=e^{i H}$ is unitary. (Notice the analogy with c numbers: if θ is real, $u=e^{i \theta}$ is a number of unit modulus.)

Figure 1: Shankar 1.9.1,1.9.2
2.2. Consider the functions $u_{n}(x)=x^{n}$ with $n=0,1,2, \ldots$. These form a basis for a vector space consisting of all real analytic functions of x on the real line in the interval $-1 \leq x \leq+1$. From the functions $u_{n}(x)=x^{n}$, we can form an orthonormal basis of functions $\phi_{n}(x)$ by means of the Schmidt process. Here we define the scalar product of two "vectors" $f(x), g(x)$ by

$$
\langle f \mid g\rangle=\frac{1}{2} \int_{-1}^{1} f(x) g(x) d x
$$

Find the orthonormal basis functions $\phi_{n}, n=0,1,2,3$. What well-known functions are these?
Figure 2: Commins 2.2
2.13. The three 2×2 Pauli spin matrices

$$
\sigma_{x}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

play an important role in many areas of quantum mechanics. The $\sigma_{x, y, z}$ and the 2×2 identity matrix

$$
I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

together span the four-dimensional vector space of all 2×2 matrices. It is easy to verify from Pauli spin matrices that

$$
\sigma_{x}^{2}=\sigma_{y}^{2}=\sigma_{z}^{2}=I
$$

and also that

$$
\sigma_{x} \sigma_{y}=i \sigma_{z}
$$

and cyclic permutations. These two relations can be combined into the following compact form:

$$
\sigma_{i} \sigma_{j}=\delta_{i j} I+i \varepsilon_{i j k} \sigma_{k}
$$

where $\delta_{i j}$ is a Kronecker delta, and $\varepsilon_{i j k}$ is the completely antisymmetric unit 3-tensor. Here $\varepsilon_{i j k}=+1$ for $i j k=1,2,3$ and even permutations thereof; $\varepsilon_{i j k}=-1$ for odd permutations of $1,2,3$; and $\varepsilon_{i j k}=0$ whenever two or more of the indices $i j k$ are equal.

The Pauli spin matrices shown earlier constitute the "standard" representation of the Pauli matrices. Another representation is obtained by writing

$$
\sigma_{x, y, z}^{\prime}=U \sigma_{a, y, z} U^{-1}
$$

where U is a unitary 2×2 matrix. Because there are an infinite number of possible unitary $2 \times$ 2 matrices, there are an infinite number of representations of the Pauli spin matrices.
(a) Show that it is impossible to construct a nonvanishing 2×2 matrix that anticommutes with each of the three Pauli matrices.
(b) Show that it is impossible to find a representation of the Pauli matrices where all three are real or where two are pure imaginary and one is real.
(c) Let us define $\sigma=\sigma_{x} \hat{i}+\sigma_{y} \hat{j}+\sigma_{z} \hat{k}$, where, as usual, $\hat{i}, \hat{j}, \hat{k}$ are unit vectors along the x-, y-, and z-axes, respectively, in Euclidean 3-space. Let $\boldsymbol{A}, \boldsymbol{B}$ be any two vector operators that commute with $\boldsymbol{\sigma}$. Show that the following identity holds:

$$
\sigma \cdot A \sigma \cdot B=A \cdot B+i \sigma \cdot \boldsymbol{A} \times \boldsymbol{B}
$$

(d) Let $\hat{\boldsymbol{n}}$ be a unit vector in an arbitrary direction in Euclidean 3-space and θ an arbitrary angle. Show that

$$
\exp (i \sigma \cdot \hat{n} \theta)=I \cos \theta+i \sigma \cdot \hat{n} \sin \theta
$$

The preceding two identities are important in many quantum mechanical applications.
Figure 3: Commins 2.13
2. Show that plausible representations of the Dirac delta function are,

$$
\begin{aligned}
\delta(x) & =\lim _{\epsilon \rightarrow 0} \frac{1}{\sqrt{\pi \epsilon}} e^{-x^{2} / \epsilon} \\
\delta(x) & =\lim _{\epsilon \rightarrow 0} \frac{1}{\pi} \frac{\epsilon}{x^{2}+\epsilon^{2}}
\end{aligned}
$$

3. Show that $\delta(c x)=\delta(x) /|c|$ where c is a constant. note that $\delta(-x)=$ $\delta(x)$.
