HW \#10 Problems
 Quantum 521

1. Prove that the two-spin state $|0,0\rangle$ is invariant under rotations by an explicit change of basis. Consider a rotation about the \hat{y} axis.
2. Find $\left\langle\left(\vec{\sigma}_{2} \cdot \hat{b}\right)\left(\vec{\sigma}_{1} \cdot \hat{a}\right)\right\rangle$ for the two-spin state $|0,0\rangle$ where $\hat{a} \cdot \hat{b}=\cos \theta$. Here 1,2 are particle labels, so the spin operator acts only on the corresponding particle spinor.
3. The annihilation of positronium in its ground state ${ }^{1} S_{0}$ but negative parity produces two photons. The polarization of the $J=0$ negative parity two-photon state is

$$
|\psi\rangle=\frac{1}{\sqrt{2}}[|R R\rangle-|L L\rangle]
$$

Show that this state has negative parity. (Under a parity transformation a vector changes sign, but a pseudo-vector such as angular momemtum ($\vec{r} \times \vec{p}$) does not.)
What is the probability that photon 1 will be found to be x-polarized and photon 2 will be found to be y-polarized, that the system is in the state $|x y\rangle$? What is the probability that the system is in the state $|x x\rangle$ What these probabilities be if the state had positive parity?
4. Consider the matrix

$$
U=\frac{a_{o}+i \vec{a} \cdot \vec{\sigma}}{a_{o}-i \vec{a} \cdot \vec{\sigma}}
$$

where a_{o} and $a_{i}, i=1,2,3$ are all real.
a) Prove that U is unitary and that $\operatorname{det}(\mathrm{U})=1$.
b) In general, a 2 x 2 unitary matrix is equivalent to a rotation. Find the corresponing rotation matrix.

