- 1. Prove that the two-spin state $|0,0\rangle$ is invariant under rotations by an explicit change of basis. Consider a rotation about the \hat{y} axis.
- 2. Find $\langle (\vec{\sigma}_2 \cdot \hat{b})(\vec{\sigma}_1 \cdot \hat{a}) \rangle$ for the two-spin state $|0,0\rangle$ where $\hat{a} \cdot \hat{b} = \cos \theta$. Here 1, 2 are particle labels, so the spin operator acts only on the corresponding particle spinor.
- 3. The annihilation of positronium in its ground state ${}^{1}S_{0}$ but *negative* parity produces two photons. The polarization of the J = 0 negative parity two-photon state is

$$|\psi\rangle = \frac{1}{\sqrt{2}} \left[|RR\rangle - |LL\rangle \right]$$

Show that this state has negative parity. (Under a parity transformation a vector changes sign, but a pseudo-vector such as angular momentum $(\vec{r} \times \vec{p})$ does not.)

What is the probability that photon 1 will be found to be x-polarized and photon 2 will be found to be y-polarized, that the system is in the state $|xy\rangle$? What is the probability that the system is in the state $|xx\rangle$ What these probabilities be if the state had positive parity?

4. Consider the matrix

$$U = \frac{a_o + i\vec{a}\cdot\vec{\sigma}}{a_o - i\vec{a}\cdot\vec{\sigma}}$$

where a_o and a_i , i = 1, 2, 3 are all real.

a) Prove that U is unitary and that det(U) = 1.

b) In general, a 2x2 unitary matrix is equivalent to a rotation. Find the corresponding rotation matrix.