HW \#11 Problems
 Quantum 521

1. a) For a plane wavefunction $\psi(x, t)$ show that $\psi^{\star}(x,-t)$ has the momentum reversed.
b) Let the spinor with positive eigenvalue of $\sigma \cdot \hat{n}$ be denoted $\chi(\hat{n})$. Using the explicit form of $\chi(\hat{n})$ in terms of polar and azimuthal angles Euler angles, verify that the operator $-i \sigma_{2} \chi^{\star}(\hat{n})=\chi(-\hat{n})$ flips the spin.
2. Write the spherical vector operater components V_{q} (rank 1 tensor) in terms of cartesian components V_{x}, V_{y}, V_{z}. Use the results of the HW3 for the rotation matrix for a spherical vector about the y-axis $d_{q, q^{\prime}}$ to evaluate

$$
\sum_{q^{\prime}} d_{q, q^{\prime}} V_{q^{\prime}}
$$

and show that this corresponds to the rotation of the cartesian components V_{x}, V_{y}, V_{z} about the y-axis.
3. In this problem from Shankar we will prove the projection theorem (15.3.19)

Exercise 15.3.3. (1) Using $\langle j j \mid j j, 10\rangle=[j /(j+1)]^{1 / 2}$ show that

$$
\left.\langle\alpha j|\left|J_{1}\right|\left|\alpha^{\prime} j^{\prime}\right\rangle=\delta_{\alpha \alpha} \delta_{j j} \hbar j j(j+1)\right]^{1 / 2}
$$

(2) Using $\mathbf{J} \cdot \mathbf{A}=J_{z} A_{z}+\frac{1}{2}\left(J_{-} A_{+}+J_{+} A_{-}\right)$(where $\left.A_{ \pm}=A_{x} \pm i A_{y}\right)$ argue that

$$
\left\langle\alpha^{\prime} j m^{\prime}\right| \mathbf{J} \cdot \mathbf{A}|\alpha j m\rangle=c\left\langle\alpha^{\prime}\right||A||\alpha j\rangle
$$

where c is a constant independent of α, α^{\prime} and \mathbf{A}. Show that $c=\hbar[j(j+1)]^{1 / 2} \delta_{m, m^{\prime}}$.
(3) Using the above, show that

$$
\begin{equation*}
\left\langle\alpha^{\prime} j m^{\prime}\right| A^{q}|\alpha j m\rangle=\frac{\left\langle\alpha^{\prime} j m\right| \mathbf{J} \cdot \mathbf{A}|\alpha j m\rangle}{\hbar^{2} j(j+1)}\left\langle j m^{\prime}\right| J^{q}|j m\rangle \tag{15.3.19}
\end{equation*}
$$

4. a) Write the operator corresponding to products of the position vector components, $x y, x z, x^{2}-y^{2}$ as components of an irreducible tensor operator of rank 2
b) The quadrupole moment of a state $|\psi\rangle=|\alpha, j, m=j\rangle$ is

$$
Q=e\langle\psi|\left(3 z^{2}-r^{2}\right)|\psi\rangle
$$

Evaluate $\left\langle\alpha, j, m^{\prime}\right|\left(x^{2}-y^{2}\right)|\alpha, j, m=j\rangle$ in terms of Q and ClebschGordon coeffiecients. Evaluate explicitly for $j=1$.

