1. a) For a plane wavefunction $\psi(x,t)$ show that $\psi^{\star}(x,-t)$ has the momentum reversed.

b) Let the spinor with positive eigenvalue of $\sigma \cdot \hat{n}$ be denoted $\chi(\hat{n})$. Using the explicit form of $\chi(\hat{n})$ in terms of polar and azimuthal angles Euler angles, verify that the operator $-i\sigma_2\chi^*(\hat{n}) = \chi(-\hat{n})$ flips the spin.

2. Write the spherical vector operator components V_q (rank 1 tensor) in terms of cartesian components V_x, V_y, V_z . Use the results of the HW3 for the rotation matrix for a spherical vector about the y-axis $d_{q,q'}$ to evaluate

$$\sum_{q'} d_{q,q'} V_{q'}$$

and show that this corresponds to the rotation of the cartesian components V_x, V_y, V_z about the y-axis.

3. In this problem from Shankar we will prove the projection theorem (15.3.19)

Exercise 15.3.3. (1) Using $\langle jj|jj, 10 \rangle = [j/(j+1)]^{1/2}$ show that $\langle \alpha j||J_1||\alpha'j'\rangle = \delta_{\alpha\alpha'}\delta_{jj'}\hbar[j(j+1)]^{1/2}$ (2) Using $\mathbf{J} \cdot \mathbf{A} = J_z A_z + \frac{1}{2}(J_-A_+ + J_+A_-)$ (where $A_{\pm} = A_x \pm iA_y$) argue that $\langle \alpha' jm'| \mathbf{J} \cdot \mathbf{A} | \alpha jm \rangle = c \langle \alpha' j||A|| \alpha j \rangle$

where c is a constant independent of α , α' and A. Show that $c = \hbar [j(j+1)]^{1/2} \delta_{m,m'}$. (3) Using the above, show that

$$\langle \alpha' jm' | A^{q} | \alpha jm \rangle = \frac{\langle \alpha' jm | \mathbf{J} \cdot \mathbf{A} | \alpha jm \rangle}{\hbar^{2} j(j+1)} \langle jm' | J^{q} | jm \rangle$$
(15.3.19)

- 4. a) Write the operator corresponding to products of the position vector components, xy, xz, $x^2 y^2$ as components of an irreducible tensor operator of rank 2
 - b) The quadrupole moment of a state $|\psi\rangle = |\alpha, j, m = j\rangle$ is

$$Q = e\langle \psi | (3z^2 - r^2) | \psi \rangle$$

Evaluate $\langle \alpha, j, m' | (x^2 - y^2) | \alpha, j, m = j \rangle$ in terms of Q and Clebsch-Gordon coefficients. Evaluate explicitly for j = 1.