HW \#7 Problems

Quantum 521

1. Solve the double delta-function potential and obtain the even and odd parity energy eigenstates.

$$
V(x)=-V_{0}[\delta(x-a)+\delta(x+a)]
$$

For what value of V_{0} does only the ground state exist?
In the limit $m V_{0} a \gg \hbar^{2}$ find the binding energies. Explain physically why the binding energies become close together as a goes to infinity.
2. Consider the one-dimentional scattering of a particle of mass m and energy $E>0$ off of an arbitrarily shaped potential barrier $V(x)$ that is non-zero only in the interval $0<x<a$. Prove that the transmission coefficient is the same whether the particle is incident on the barrier from the left or the right.
3. Find the uncertainty product $\Delta x \Delta p$ for the simple harmonic oscillator for all states $|n\rangle$.
4. Calculate the time evolution of $\langle x\rangle$ and $\langle p\rangle$ for for the simple harmonic oscillator.
5. Prove that the parity operator for the one dimensional simple harmonic oscillator is $\hat{P}=\exp (i \pi \hat{N})$ where \hat{N} is the number operator.
6. Consider a charged particle $-q$ in a one dimenstional harmonic oscillator $V(x)$ with a constant electric field \mathcal{E} in the x-direction. Find the energy eigenvalues. Find the energy eigenvectors.
7. For the ammonia molecule take the state at $t=0$ to be $|\psi(0)\rangle=|1\rangle$. Calculate the probability as a function of time for the molecule to be in state $|1\rangle$.

