Phys 521
of ale 2023
m. Gold

Lecture I Some Math

Quantum position states are vectors in an abstract space of complex function' with a (Unitary) unis product: Hilbert space.

Euclidean vectors: $\quad \vec{F} \stackrel{*}{=}\left(x_{1}, x_{2}, x_{3}\right)$ coordinate $\vec{F} \cdot \vec{F}=\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)$ norm norm invariant under rotation.
orthogamal, unit vectors

$$
\vec{F}=\sum_{i=1}^{3} x_{i} \hat{e}_{i} \cdot \hat{e}_{j}=\delta_{i j}
$$

Dirac vector notation: $|v\rangle$ "Ret" Linear vectorspace $\{t r)\}$
(1) addition $|c\rangle=|a\rangle+|b\rangle$
(2) Scalar multiplication distributive over vector e

$$
a(|v\rangle+|w\rangle)=a|v\rangle+a|w\rangle
$$

(2) Scalar multiplication distributive in scalars

$$
(a+5)|v\rangle=a|v\rangle+b|v\rangle
$$

(8) Scalar multiplicetoon associative

$$
a(b|v\rangle)=a b|v\rangle
$$

(5) addition commutation

$$
|v\rangle+|w\rangle=|w\rangle+|v\rangle
$$

(6) addizusk associative

$$
|v\rangle+(|w\rangle+|z\rangle)=(|v\rangle+|w\rangle)+|z\rangle
$$

θ exists null vector $|0\rangle+|v\rangle=|v\rangle$
(8) exists in erse under addition

$$
|v\rangle+|-v\rangle=\langle 0\rangle
$$

Linear independener
set coNvectors $|i\rangle$ such that any vector may be expanded

$$
\begin{aligned}
& |v\rangle=\sum_{i=1}^{N} C_{i}|i\rangle \\
& C_{i}=\text { complex numbers }
\end{aligned}
$$

components C_{i} represent vector an column

$$
|v\rangle \neq\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots_{N}
\end{array}\right)_{j+b a s i s}
$$

Inver Product and Dual Space
Euclidean vectors

$$
\vec{A} \cdot \vec{B}=(\underbrace{\left(A_{1}, A_{2}, A_{3}\right.}_{\vec{A} \cdot})\left(\begin{array}{l}
B_{1} \\
B_{2} \\
Q_{3}
\end{array}\right)
$$

"A." lever map of vectors to scalars.

Generalize Covai map

$$
|v\rangle \xrightarrow{\langle w|} \text { scaler }
$$

thee maps form a hneai vector pan calpe
the duel space with element h $\langle w|$ "bia" Every vector has a dual

$$
|v\rangle \doteq\left(\begin{array}{c}
V_{i} \\
\vdots \\
V_{N}
\end{array}\right) \quad\langle v|=\left(V_{1}^{*}, V_{2}^{*}, \ldots V_{N}^{*}\right)
$$

The Dirac bracket is the inner product

$$
\langle v \mid w\rangle=\left(V_{1}^{*}, V_{2}^{*} \ldots V_{v}^{*}\right)\left(\begin{array}{l}
w_{1} \\
w_{2} \\
w_{n}
\end{array}\right)
$$

product ii
(1) $\langle v \mid w\rangle=\langle w \mid v\rangle^{*}$ skew symmetric
(2) $\langle v \mid v\rangle \geqslant 0$ equality if $|v\rangle=|0\rangle$
(3) $\langle v|(a|w\rangle+b|z\rangle)=a\langle v \mid w\rangle+b\langle v| z)$

$$
\begin{aligned}
&=|a w+b z\rangle \\
&\langle a w+b z \mid v\rangle=\langle v \mid a w+b z\rangle^{*} \\
&=a^{*}\langle w \mid v\rangle+b^{*}\langle v \mid z\rangle \quad a n t_{i}-l i n e a r
\end{aligned}
$$

convenient to choose orthonormal basis $\{|i\rangle p$

$$
\left\langle_{i} \mid j\right\rangle=\delta_{i j}
$$

Gram-Sehmidt construction complete basis $\{|b i\rangle\}$

$$
\begin{aligned}
& |1\rangle=\frac{\left|b_{1}\right\rangle}{\sqrt{\left\langle b_{1} \mid b_{1}\right\rangle}} \\
& \left|2^{\prime}\right\rangle=\left|b_{2}\right\rangle-|1\rangle\left(\left\langle 1 \mid b_{2}\right\rangle\right.
\end{aligned}
$$

normalize $|2\rangle=\frac{\left|2^{\prime}\right\rangle}{\sqrt{\left\langle 2^{\prime} \mid 2^{\prime}\right\rangle}}$ etc.
Schwartz 3 Inequality

$$
|\langle v \mid w\rangle| \leq \sqrt{\langle v \mid v\rangle} \sqrt{(w|w\rangle}
$$

e complex norm $|c|=\sqrt{c^{*} C}$
triangle norm $||v\rangle| \equiv \sqrt{\langle v \mid v\rangle}$

$$
||w+| w\rangle|\leqslant| w\rangle|+| | w\rangle \mid
$$

Subspace subset of vector space forming; ts own vector spar.

Linear Operators,
linear map $|w\rangle \xrightarrow{\hat{T}}\left|v^{-1}\right\rangle$
I often use "hat" to denote operators.

$$
\hat{T}(a|a\rangle+b|b\rangle)=a(\hat{T}|a\rangle)+b(\hat{T}|b\rangle)
$$

Example: Rotation \& Euclidean vector

$$
\begin{aligned}
& \hat{R}(\phi \hat{z}) \div\left(\begin{array}{ccc}
c & -s & 0 \\
s & c & 0 \\
0 & 0 & 1
\end{array}\right) \\
& c \equiv \cos \phi \\
& s \equiv \sin \phi
\end{aligned}
$$

active as opposed to passive charge of basis

$$
\hat{R}^{E}(\theta \hat{y}) \hat{R}_{2}(\phi \hat{z}) \neq \hat{R}_{z}^{\varepsilon} \cdot \hat{R}_{y}
$$

rotetuone do not commute
defoe commutate:

$$
[\hat{S}, \hat{T}] \equiv \hat{S} \hat{T}-\hat{T} \hat{S}
$$

len 1-6
Projection operators. In basis $\{1 i\rangle\}$

$$
\begin{aligned}
& |v\rangle=\sum v_{i}|i\rangle \doteq\left(\begin{array}{c}
v_{1} \\
v_{2} \\
v_{N}
\end{array}\right) \\
& \langle i \mid v\rangle=\sum_{j} v_{j}\left\langle\frac{|j\rangle}{v_{i j}}=v_{i}\right.
\end{aligned}
$$

So $\quad|v\rangle=\langle\mid i\rangle\langle i \mid v\rangle$
$\hat{I}=\sum|i\rangle\langle i| \quad$ unit opera
$\hat{P}_{i}=|i\rangle\langle i| \quad$ projection operator
In basis, operators represented as matricies

$$
\begin{aligned}
&\left|v^{\prime}\right\rangle= \hat{T}|v\rangle=\sum_{j} \hat{T}|j\rangle\langle j \mid v\rangle \\
&\left\langle i \mid v^{\prime}\right\rangle=\langle i| T^{\prime}|v\rangle \\
&= \sum_{j}\langle i| \hat{T}|j\rangle\langle j \mid v\rangle \\
& {[T]_{i j} } \\
& v_{i}^{\prime}= \sum_{j}[T]_{i j} v_{j} \\
&\left(\begin{array}{l}
v_{1}^{\prime} \\
v_{2}^{\prime} \\
\sqrt{i_{2}^{\prime}}
\end{array}\right)=\left[\begin{array}{c}
\text { sum in col } \\
T_{i j}
\end{array}\right]\left(\begin{array}{c}
v_{1} \\
v_{2} \\
v_{2}
\end{array}\right)
\end{aligned}
$$

Correspondivj bra transfoms ar

$$
\begin{aligned}
&\left|v^{\prime}\right\rangle\left.=\hat{T} \mid v^{-}\right) \\
&\left\langle v^{\prime}\right|=\langle v| \hat{T}^{+} \quad \text { Define } \\
& \hat{T}^{+} \stackrel{\text { Cormitina }}{=}\left(T_{i j}^{*}\right)^{T} \quad \text { transpose } \\
& \text { or } \quad T_{i j}^{+}=T_{j i}^{*} \quad
\end{aligned}
$$

Examkr: Padi matrix

$$
\hat{\sigma_{y}}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)=\hat{\sigma}_{y}^{+}
$$

$\hat{T}^{t}=\hat{T} \quad$ Hamitian metrix
just ae ary complex numer

$$
C=\frac{\frac{c+C^{*}}{2}+\frac{c-e^{*}}{2}}{\text { real imaginary }}
$$

ary

$$
\frac{\hat{T}}{T}=\frac{\hat{T}+\hat{T}^{+}}{2}+\frac{\hat{T}-\hat{T}^{+}}{2}
$$

Hermition anti-Hamitimi

$$
A^{+}=A \quad A^{+}=-A
$$

Important: easy to show that
Eigenvalun of Hermition matrix are real opservables correspond to Hermitioi operators

Unitany operator

$$
\hat{U}+\hat{V}=\hat{I}
$$

Dirai product invariant undes unitay transformition

$$
\begin{gathered}
\hat{\vartheta}|v\rangle=\left|v^{\prime}\right\rangle \\
\hat{\jmath}|w\rangle=\left|w^{\prime}\right\rangle \\
\left\langle w^{\prime} \mid v^{\prime}\right\rangle=\langle w| v^{+} v|v\rangle=\left\langle w \mid v^{\prime}\right\rangle
\end{gathered}
$$

Functumi of operators.
Agened by Tayhor expantion

$$
f(\hat{A})=\sum_{i=0}^{\infty} \frac{1}{n!} \frac{\left.d^{n} f\right|_{x=0} ^{n} \hat{A}_{x=0}^{n}, ~}{n}
$$

Ang unitary operator can be wrilten ar

$$
\hat{U}=e^{i \hat{H}} \quad \hat{H} \text { Hermition }
$$

Exampe: rotator operator are unitary

$$
\begin{aligned}
& R^{+}(\theta \hat{n})=R^{-1}(\theta \hat{n})=R(-\theta \hat{n}) \\
& R(\theta \hat{n})=e^{-i \theta \hat{n} \cdot \vec{T}}
\end{aligned}
$$

Ti $i=1,2,3$ are Hermitian Genenatore
Example of tie group pronourend "Lee" continue trareformationi. Almost all (and in particular relevant to us) properer: fellow from

$$
\begin{aligned}
& {\left[\hat{T}_{i}, \hat{T}_{j}\right]=i \sum_{k} f_{i j k} \hat{T}_{k}} \\
& \text { Structure onstint. }
\end{aligned}
$$

Dor quantemer rotation group $5 v(2)$

Einstein summation:

$$
\left[\frac{\sigma_{i}}{2}, \frac{\sigma_{j}}{2}\right]=i \sum_{k} \varepsilon_{i j h} \frac{\sigma_{k}}{2} \quad \text { unitary } \quad 2^{2}-1=3
$$

repeated indices assumed to be summed. no need to write Sum symbol
lowest rep. is 2×2 matricion
σ_{i} pauli matricies $\frac{\sigma_{i}}{2}$ generator
structione constants jest completely antisymane Sigh sumption

Hilbert Space A_{n} oo dimension, non denumevalh vector space with complex function i an vectors.

Nequally spaced points, $N+1$ equal sparer of size

$$
\Delta \equiv x_{n_{+1}}-x_{n}=\frac{L}{N+1}
$$

$$
\begin{aligned}
& x_{n}=-\frac{L}{2}+n\left(\frac{L}{N+1}\right) \\
& x_{0}=-\frac{L}{2}, X_{1}=-\frac{L}{2}+\Delta, \ldots, X_{N}=\frac{L}{2}-\Delta, X_{N+1}=\frac{L}{2}
\end{aligned}
$$

ψ_{i} approximates $\psi(x)$

$$
\begin{aligned}
& |\psi\rangle \doteq\left(\begin{array}{c}
\psi_{1} \\
\vdots \\
\psi_{N}
\end{array}\right) \quad \text { form } N \text { dimensional } \\
& |\psi\rangle+|\phi\rangle \doteq\left(\begin{array}{c}
\psi_{1}+\phi_{1} \\
\psi_{2}+\phi_{2} \\
\vdots \\
\psi_{N}+\phi_{N}
\end{array}\right) \\
& \langle\phi \mid \psi\rangle=\sum_{i=1}^{N} \phi_{i}^{*} \psi_{i}
\end{aligned}
$$

basis vector

$$
\left.\begin{array}{l}
\left|x_{i}\right\rangle \doteq\left(\begin{array}{c}
0 \\
\vdots \\
\vdots \\
0
\end{array}\right) i^{\text {th }} \text { element } 1 \\
\text { all ot hen } 0
\end{array}\right] \begin{aligned}
& \left\langle x_{i} \mid x_{j}\right\rangle=\delta_{i j} \\
& \psi\left(x_{i}\right\rangle=\psi_{i}=\left\langle x_{i} \mid \psi\right\rangle \\
& |\psi\rangle=\sum\left|x_{i}\right\rangle \psi\left(x_{i}\right)=\sum\left|x_{i}\right\rangle\left\langle x_{i} \mid \psi\right\rangle
\end{aligned}
$$

In brigit $N \rightarrow \infty$ our inner product diverge. We should multiply by normalization factor $\Delta=\frac{L^{\circ}}{N+1}$

$$
\left.\begin{array}{rl}
\langle\phi \mid \psi\rangle & =\lim _{N \rightarrow \infty} \sum_{i=1}^{N} \Delta \phi^{*}\left(x_{i}\right) \psi\left(x_{i}\right) \\
& =\int_{-L / 2}^{l / 2} d x \phi^{*}(x) \psi(x) \quad \text { con all taro } \\
\langle\rightarrow \infty \\
\text { needed }
\end{array}\right)
$$

Dirac S-function not really a function, but represented by any function with propaty

$$
\int_{-a}^{+a} f(x) \delta(x) d x=f(0)
$$

"Spike "at $x=0$ of unit area most useful representation:

$$
\delta(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i k x} d k=\lim _{\lambda \rightarrow \infty} \frac{1}{\pi} \sin \frac{\operatorname{lix}}{x}
$$

easy to ser $\delta(0)=\lim _{\lambda \rightarrow \infty} \frac{\lambda}{\pi}$ numerically, can show, $\begin{aligned} \int_{-a}^{a} \delta(x) d x & =\lim _{\lambda \rightarrow \infty} \frac{1}{\pi} \int_{-a}^{a} \frac{\sin \lambda \lambda}{x} d x \\ & =1\end{aligned}$ propertan (1) $\delta(x)=\delta(-x)$ even
(6) Derivative of step $\frac{d \theta(x-a)}{d x}=\int(x-a)$
$\operatorname{atcp} \theta(x-a)= \begin{cases}0 & x<a \\ 1 & x>a\end{cases}$
(3) $\delta(f(x))=\frac{\delta\left(x-x_{0}\right)}{\left|\frac{d f}{d x}\right|_{x=x}}$ when $f\left(x_{0}\right)=0$
(t) derivative

$$
\delta^{\prime}\left(x-x^{\prime}\right)=\frac{d}{d x}\left(x-x^{\prime}\right)=-\frac{d}{d x^{\prime}}\left(x-x^{\prime}\right)
$$

$$
\begin{aligned}
& \int f\left(x^{\prime}\right) \delta^{\prime}\left(x-x^{\prime}\right) d x^{\prime}=\frac{d}{d x} \int f\left(x^{\prime}\right) \delta\left(x-x^{\prime}\right) d x^{\prime} \\
& =\frac{d y}{d x} \\
& \int f\left(x^{\prime}\right)\left(-\frac{d}{d x^{\prime}} \delta\left(x-x^{\prime}\right)\right) d x^{\prime}=\int \frac{d f\left(x^{\prime}\right)}{d x^{\prime}} \delta\left(x-x^{\prime}\right) d x^{\prime}=\frac{d f}{d x}
\end{aligned}
$$

A) $\frac{d}{d x} \delta\left(x-x^{\prime}\right)=\delta\left(x-x^{\prime}\right) \frac{d}{d x}$

Derivative operator.

$$
D|f\rangle=\left|\frac{d f}{d x}\right\rangle \text { a not Hermituri }
$$

we can show $k=\frac{1}{i} D$ is Hermitian

$$
\begin{aligned}
& \langle g| k|F\rangle=\langle k \mid k f\rangle=\langle f \mid g\rangle^{*}=\left\langle k^{t} \mid g\right\rangle^{*} \\
& \langle\delta| d x d x^{\prime}\langle g \mid x\rangle\langle x| k\left|x^{\prime}\right\rangle\left\langle x^{\prime} \mid f\right\rangle \\
& =\iint d x d x^{\prime} g^{*}(x) \delta\left(x-x^{\prime}\right)\left(\frac{1}{i} \frac{d}{d x^{\prime}}\right) f(x) \\
& =\int d x g^{x}(x) \frac{1}{i} \frac{d f}{d x}
\end{aligned}
$$

$$
\begin{aligned}
& \langle f| K^{+}|g\rangle^{*} \\
& =\left(\int d x f^{*}\left(\frac{1}{i} \frac{d}{d x}\right) f\right)^{10-14} \\
& =-\int f \frac{d}{i} \frac{d}{d x}\left(1 g^{*}\right)=\frac{d f}{d x} g^{*}+f \frac{d g^{x}}{d \lambda} \\
& \quad f g^{*} \left\lvert\,+\int g^{*} \frac{1}{i} \frac{d f}{d x} d x \quad\right. \text { unate by past }
\end{aligned}
$$

So in QM. wave functom requisi ty vanish at $=\infty$, is /termition momentem opentri n'

$$
\hat{p}_{x}=\frac{\hbar}{i} \frac{d}{d x}
$$

