Lecture # 1 Some Math

Quantum position states are vectors in an abstract
space of complex functions with a
(Unitary) universalment: Hilbert space.

Euclidean vectors: == (X, X2, X3) coordinate

F.F = (X, X2, X3) norm

norm invariant under rotations. Orthogonal, unit vectors

 $F = \frac{3}{2} \times \hat{e}_i$

Dirac vector notation: \v7 "ket"
Linear vectorspace ? hr)}

0 addition 167 - 19>+15>

@ scalar multiplication distributive over vector

(a+5) lar) = a lor) + b lor

B scalar multiplication associative

a (51v) = ab |v)

6) addition commutative 127+147=147+12

6 additus associative N7+ (1w7+12) = (N7+1w7) + 12)

)		
	@ exists mul vector 0)+/m=(v)	
	8 exists in metso under addition	
	107+1-27=(0)	
	Linear independence	
	set of N vectors 1:) such that any vector may be expand	
	any vector may be expand	
	v = dimension of space	
	127 = TC: (i)	
	v = dimension of space v = IC: i) li) & form a basis.	
	C; = complex numbers.	
	components Ci represent vector au column	
	$ w\rangle = \frac{1}{2}$	1
	Le che liabasis	
	Invier Product and Dual Space	
	Euclidean rectors	
ē	$\begin{pmatrix} B_1 \\ B_2 \end{pmatrix}$	
	$\overrightarrow{A} \cdot \overrightarrow{B} = (A, A_1, A_3) (\overrightarrow{B}_3)$	
	"A.	
	"A." linear map of vectors to scalars.	

Generalize lovar may IV) -> scaler there maps form a linear vector span calls
the deed space with elements (u) "bra"
Every vector has adual $|v\rangle \doteq \langle v| \doteq \langle v, v_2, ..., v_N^* \rangle$ The Dirac bracket in the inner product (V, V2, ... V) (W2) Product is @ LVIW) = LWIV) skew symmetric @ <v/o> 20 equality iff 1v>=10> 3 <v/(a|wz+b|z)) = a(v|wz+b(v|z) (aw+b2 v)= (v | av+b2)+ = a = (w/v) + 6 < (v/2) anti-linear

	convenient to choose ortho-normal basis 3/1)
	(: \j') = \(\int_{ij}\)
	Gram-Schmidt construction
	complete basis 31bi)}
	$ 1\rangle = \frac{ b\rangle}{\sqrt{\langle b\rangle b\rangle}}$
	V < b, b, >
	1/217= 1b2) - 11> (11/b2)
	12')
	normalize 12)= 12')
	Schwartz Inequality
	(LVIW) = V(VIV) V(WIW)
	€ complex horm c = JE+C
	triangle norm w> = Kulus
	1, 2, 1, 2, 4, 1, 2
	W>+ IW> = W> + / Iw>
	Salara and a salara
	Subspace subset of vector space
	forming its own vertor space.
1	

/-	
	Linear Operators
	linear map /v) -> (v)
	I often use "hat" to derot e operators.
	f(a a)+b b) = a(f a)+b(f b)
	Example! Rotation of Euclidens vector
	$\hat{\alpha}$
	Q Q V
	R (02) = 5 C D
	001)
	$ \begin{array}{cccc} R & (02) & = & (0-5) & 0 & 0 & 0 \\ R & (02) & = & (02) & 0 & 0 & 0 & 0 \\ C & = & Cos & 0 & 0 & 0 & 0 & 0 \end{array} $
	s = slips active as apposed to
	passive change of basis
	RE(OG) R2(DE) 7 RZERY totetrone do
	not commute
	define commutator?
э.	$\begin{bmatrix} \hat{S}, \hat{+} \end{bmatrix} = \vec{S} \vec{+} - \vec{T} \vec{S}$
	$[S,T] \equiv S = 1 - 10$

lu 1 - 6

Projection operators. In basis ? (1) しいつ= てかに) = (な) (11)か)= こりくける = り、 So W= [1/1/1/1 I = Zli) (il unit operada P. = 11) (il projectioni operator In basis operators represented as matricies データー エデリンターレ (ilri) = (i/flo) = Z (ilflixilo) V: =] []; V, I sun on column indes $\begin{pmatrix} V_1 \\ V_2 \end{pmatrix} = \begin{pmatrix} V_1 \\ V_2 \end{pmatrix} \begin{pmatrix} V_2 \\ V_3 \end{pmatrix}$

Corresponding bra transforms as (vi) = 7 (v) Definer (v' = <v | 7 + Hermitian + = (Ti) transpose 8- Ti= Ti Example: Pauli matrix $\hat{C}_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} = \hat{C}_y^{\dagger}$ T+= F Hamitian matrix just ar any complex runer C = C+C+ + C-C+ real imaginary 宁三宁十十一千十 Hermitian anti-Hamitian $A^{+}=A$ $A^{+}=-A$

Important! easy to show that
Gigenvalue of Hermitian Metrix are real Observables correspond to Hermitian operator
Observables correspond to Hermitian operator
Unitary operator U+V=I
Diric product invariant under Unitary transformation
() v/= v·>
0 (w) = (w1)
$\langle w' v' \rangle = \langle w v' \rangle = \langle w v' \rangle$
Function of sperators.
Defined by Taylor expantion
$f(\hat{A}) = \frac{1}{2} \int_{0}^{\infty} \frac{df}{dx} dx$
Any unitary operator can be written as
O=eiff H Hernition

Examps: rotation operator are R'(0) = R'(0) = R(-0) R(02) = e - i 0 n.7 Ti i=1,2,3 are Hermitian generators Example of Lie group pronounced "les" continues transformation. Almost all (and in particular relevant to us) proporties Sollow from [T, T;] = 22 fishTa Structure constants For quantum totatem group 50(2) $\begin{bmatrix}
\overline{U}_{i} & \overline{U}_{j} \\
\overline{U}_{i} & \overline{U}_{j}
\end{bmatrix} = i \underbrace{\sum_{i \neq k} \overline{U}_{k}}_{\underline{Z}} \underbrace{\int_{\underline{U}_{i}} \overline{U}_{k}}_{\underline{U}_{i}} \underbrace{\int_{\underline{U}_{i}} \overline{U}_{k}}_{\underline{U}_{i}} \underbrace{\int_{\underline{U}_{i}} \underline{U}_{i}}_{\underline{U}_{i}} \underbrace{\int_{\underline{U}_{i}} \underline{U}_{i}}_{\underline{U}_{i}}$ Einstein summation: repeated indices assumed to be summed. lavest rep. vi 2x2 matricin no need to write Sum symbol Vi Pauli matticies Ji generator structure constants just completely anti symperi Eich Symbol

(X) = (i) ith element 1
all often 0 (X: X) = 0:3 Y(Xi) = 40 = (x: 4) 4) = 2 (xi) 4(xi) = 2 (xi) (xi 4) In limit N > 00 our inner product
diverge, we should multiply by
normalization factor $\Delta = \frac{L}{N+1}$ (0/4) = lin 7 D p*(X.) 4(X.) Can also take $= \int_{-\infty}^{\infty} dx \, \mathcal{D}(x) \, \mathcal{V}(x)$ Î = | dx |x)(x) (X(Xx) = Six Six (x')x) = S(x'-x)

<u> </u>	Dirac S- function not really a Sunction, but represented by any function with property
	Spike at X=0 of unit aren
	most unejne representationi
	$S(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{kx}{k} dk = \lim_{\lambda \to \infty} \frac{1}{\lambda} \int_{-\infty}^{\infty} \frac{\sin \lambda x}{\lambda}$
	easy to see $J(0) = \lim_{\lambda \to \infty} \frac{\lambda}{1}$
	numerically, can show $\int \frac{\partial x}{\partial x} dx = \lim_{x \to \infty} \frac{\int \sin x}{x} dx$ $= 1$
	Propertiei (1) O(X) = U(X) Qven
	Derivative of step $d\Theta(x-a) = J(x-a)$
	step $\Theta(x-a) = \begin{cases} 0 & x \in q \\ 1 & x > a \end{cases}$
	$3) \delta(J(x)) = \frac{\delta(x-x_0)}{\left \frac{df}{dx}\right _{x=x_0}} $ when $f(x_0)=0$
	8 derivative
)	$\delta'(x-x') = \frac{\partial}{\partial x}(x-x') = -\frac{\partial}{\partial x'}(x-x')$
200	

bookmark

100%

playback speed

jump to position

volume

record pause stop

 $\int f(x) \delta'(x-x') dx' = \frac{d}{dx} \int f(x') \delta(x-x') dx'$ $\frac{3}{3}\frac{\lambda x}{\lambda x}$ $\int \int (x')(-\frac{d}{dx}) \int (x-x') dx' = \int \frac{df(x')}{dx'} \int (x-x') dx' = \frac{df}{dx}$ $\int \int (x')(-\frac{d}{dx}) \int (x-x') dx' = \int \frac{df(x')}{dx'} \int (x-x') dx' = \frac{df}{dx}$ $\int \int (x')(-\frac{d}{dx}) \int (x-x') dx' = \int \frac{df(x')}{dx'} \int (x-x') dx' = \frac{df}{dx}$ $\frac{\partial}{\partial x} \delta(x-x') = \delta(x-x') \frac{\partial}{\partial x'}$ Derivative operator. D/J) = \df) u not Hernitum we can show K = 1) is Hermitian (g|K|F)= (s|Kg)=(kf|g)* = (f|K*|g)* Mdxdx, <31x><x11</x, ><x, 19> $= \iint dx dx' g^*(x) \delta(x-x') \left(\frac{1}{c} dx'\right) f(x')$ $= \int dx \ g^*(x) \frac{1}{i} \frac{df}{dx}$

 $= \left(\int dx \int^{\frac{1}{2}} \left(\frac{1}{i} \frac{dx}{dx}\right)^{\frac{1}{2}}\right)^{\frac{1}{2}} \frac{dx}{dx} \left(\frac{1}{2} \frac{dx}{dx}\right)^{\frac{1}{2}} \int_{0}^{\infty} \frac{dx}{dx} \int_{0}^{\infty} \frac{dx} \int_{0}^{\infty} \frac{dx}{dx} \int_{0}^{\infty} \frac{dx}{dx} \int_{0}^{\infty} \frac{dx}{dx} \int$ = - [] + fig * mtegrate by parts 191 + Si dx dx Hermitian if and point lerm vanish So in QM. wave function regurid to Varish at = 00, ev Hermitian momentem o perstor in Pretide

