Recitation \#1
 Quantum 521

1. Given a matrix A with eigenvalues a_{i} prove that $\operatorname{Tr}(\mathrm{A})=\sum \mathrm{a}_{\mathrm{i}}$
2. Consider a classical collection of masses m_{i} and positions \vec{r}_{i} rotating with about a fixed axis with angular velocity $\vec{\omega}$. The velocites are therefore $\vec{v}_{i}=\vec{\omega} \times \vec{r}_{i}$.
In general, will the angular momentum be parallel to $\vec{\omega}$?
Argue that in general there will be three directions for $\vec{\omega}$ that if chosen will have the angular momentum be parallel to this direction. How do you find these directions?
3. Prove that, given a function $f(x)$ which has a zero $f\left(x_{0}\right)=0$,

$$
\delta(f(x))=\frac{\delta\left(x_{0}-x\right)}{\left.\left|\frac{d f}{d x}\right|_{x_{0}} \right\rvert\,}
$$

Hint: On hw 1 you prove that $\delta(a x)=\delta(x) /|a|$.
4. Prove that

$$
\delta\left(x-x^{\prime}\right)=\frac{d}{d x} \theta\left(x-x^{\prime}\right)
$$

where θ is the unit step function.

