Recitation \#10 Quantum 521

1. In lecture 11 we will show how to decompose a direct product of two spin- $1 / 2$ for particle 1 and 2 ,

$$
\left|1 / 2, m_{1}\right\rangle_{1}\left|1 / 2, m_{2}\right\rangle_{2}
$$

into irreducible representations $j=0,1$ by applying the lowering operator $S_{-}=$ $S_{-}^{1}+S_{-}^{2}$ where the operator S_{-}^{1} acts only on the 1 -ket, and S_{-}^{2} acts only on the 2 -ket.

For direct products of greater \mathbf{j}, this becomes tedious. The coefficents in the decomposition are known as Clebsh-Gordon coefficients and can be found in tables. Use the table on the back of this page to get the decompositon for the two spin- $1 / 2$ for particles, and for the spin- 1 combined with spin- $1 / 2$.
2. By comparing the hamiltonian of the simple harmonic oscillator in momentum-space to that of position space, find the momentum space wave function for the ground state. Recall that in position space the ground state is

$$
\psi_{0}(x)=\frac{1}{\pi^{1 / 4} \sqrt{x_{0}}} \exp \left\{-\frac{1}{2}\left(\frac{x}{x_{0}}\right)^{2}\right\}
$$

where $x_{0}=\sqrt{\frac{\hbar}{m \omega}}$

46. Clebsch-Gordan Coefficients, Spherical Harmonics, and d Functions

Figure 46.1: The sign convention is that of Wigner (Group Theory, Academic Press, New York, 1959), also used by Condon and Shortley (The Theory of Atomic Spectra, Cambridge Univ. Press, New York, 1953), Rose (Elementary Theory of Angular Momentum, Wiley, New York, 1957), and Cohen (Tables of the Clebsch-Gordan Coefficients, North American Rockwell Science Center, Thousand Oaks, Calif., 1974).

