Recitation \#13

Quantum 521
The wave function of a particle subjected to a spherically symmetrical potential $V(r)$ is given by

$$
\psi(\vec{r})=(x+y+3 z) f(f)
$$

1. Is $\psi(\vec{r})$ eigenfunction of L^{2} ? If so, what is the eigenvalue ℓ ? If not, what are the possible values of ℓ we can get when L^{2} is measured?
2. What are the probabilities to measure the azimuthal quantum number with value m ?
3. If $\psi(\vec{r})$ is an energy eiegenstate, find the potential $V(r)$. Recall, time independent Schrodinger is

$$
\left[\frac{-\hbar^{2}}{2 m} \hat{P}_{r}^{2}+\frac{1}{2 m r^{2}} \hat{L}^{2}+V(r)\right] \psi=E \psi
$$

