Recitation \#3 Quantum 521

1. Prove that if the Hamiltonian is time dependent but $\left[\hat{H}\left(t_{2}\right), \hat{H}\left(t_{1}\right)\right]=0$

$$
\exp \left(\frac{-\mathrm{i}}{\hbar} \int_{0}^{\mathrm{t}} \hat{\mathrm{H}}\left(\mathrm{t}^{\prime}\right) \mathrm{dt}^{\prime}\right)
$$

Hint: for infinitessimal Δt

$$
\hat{\mathrm{U}}(\mathrm{t}+\Delta \mathrm{t}, \mathrm{t})=\hat{\mathrm{I}}-\mathrm{i} \Delta \mathrm{t} \hat{\mathrm{H}}(\mathrm{t}) / \hbar=\exp (-\mathrm{i} \Delta \mathrm{tH} \hat{\mathrm{t}} \mathrm{t}) / \hbar)
$$

2. Shankar postulates that the momentum operator is

$$
\langle x| \hat{p}\left|x^{\prime}\right\rangle=-i \hbar \delta^{\prime}\left(x-x^{\prime}\right)
$$

Use this to find a first order differenial equation for the plane wave state $\langle x \mid p\rangle=\phi_{p}(x)$. Integrate to find $\phi_{p}(x)$ up to a normalization constant. Determine the normalization constant from $\left\langle p \mid p^{\prime}\right\rangle=\delta\left(p-p^{\prime}\right)$

