- 1. Prove that if an operater is skew hermitian $A^{\dagger} = -A$ that it can have only one real eigenvalue.
- 2. In the notation from class, for hermitian opertators A,B defining $A' \equiv A \langle A \rangle$ and similarly for B' show that if $A' |\psi\rangle = cB' |\psi\rangle$ and the anticommutator $\{A, B\} = 0$ that

 $\Delta A \Delta B = |\langle [A, B] \rangle|/2$

(minimum incertainty product). What kind of constant is c?

For the Gaussian plane wave state with momentum $\hbar k$ find the constant c.

$$\Psi(\mathbf{x}) = \alpha \exp\{\mathrm{i}\mathbf{k}\mathbf{x} - \frac{\mathbf{x}^2}{4\sigma^2}\}$$

where α is the normalization consant.