Recitation \#6

 Quantum 5211. Consider a particle of mass m in a 1-D box, $0<x<a$. Suppose that at time $t=0$ the particle is in the properly normalized state,

$$
\psi(x, 0)=\sqrt{\frac{2}{a}}\left[\frac{3}{5} \sin \left(\frac{\pi x}{a}\right)+\frac{4 i}{5} \sin \left(\frac{3 \pi x}{a}\right)\right]
$$

a) Determine the probabilities P_{1}, P_{2} and P_{3} to measure the ground state energy E_{1}, the first excited state energy E_{2} and the third excited state energy E_{3}.
b) What is the ground state energy E_{1} ? In the following questions, express all energies in terms of the ground state energy E_{1}.
c) What is the expectation value $\langle E\rangle$?
2. Consider a particle of mass m in a 1-D box, $0<x<a$. Suppose that at time $t=0$ the particle is in the properly normalized state,

$$
\psi(x, 0)=\frac{1}{\sqrt{2}} \sqrt{\frac{2}{a}}\left[\sin \left(\frac{\pi x}{a}\right)+\sin \left(\frac{2 \pi x}{a}\right)\right]
$$

Find $\langle x(t)\rangle$. Use the integral

$$
\int_{0}^{\pi} \theta \sin (\theta) \sin (2 \theta) d \theta=-\frac{8}{9}
$$

