Recitation \#8

Quantum 521

1. A neutron travels from A to D along two paths up the tilted plane shown in Figure 1. Calculate the phase difference of the wave function along the two paths in terms of the neutron mass m , the gravitational acceleration g , and the de Broglie wavelength λ, the angle δ, and other constants. Calculate the interference probability resulting from the interveference.

Figure 1: Plane is rotated around axis AC by an angle δ so that it is tilted vertically. The neutron climbs the hill of height $\ell_{2} \sin \delta$ going from A to D .
2. Write the propagator for the free particle as an expansion in energy eigenstates, and then calculate the propagator $\left\langle x_{1}, t \mid x_{0}, 0\right\rangle$. Use the "complete the square" Gaussian integral,

$$
\int_{-\infty}^{+\infty} \exp \left(-a x^{2}+b x\right)=\sqrt{\frac{\pi}{a}} \exp \left(\frac{b^{2}}{4 a}\right)
$$

